Akash Srivastava

I am the Director and Chief Architect of Core AI at IBM, where I lead AgentOps—a platform for building, evaluating, and optimizing agentic AI systems.

I am a Principal Investigator at the MIT-IBM Watson AI Lab, where I led the post-training team for Granite. I also founded the Red Hat AI Innovation Team (now in advisory role), where we created InstructLab—an open-source framework for LLM customization.

I obtained my PhD at the University of Edinburgh, where I worked with Prof Charles Sutton and Prof Michael U. Gutmann on variational inference and generative models.


Research

My research interests include agentic AI systems, inference-time scaling and reasoning, post-training and model customization, and generative modeling.


Selected Press

All media coverage


Publications

Inference-Time Scaling, Sampling, & Probabilistic Inference (LLMs)

Mitigating Premature Exploitation in Particle-based Monte Carlo for Inference-Time Scaling
Giorgio Giannone, Guangxuan Xu, Nikhil Shivakumar Nayak, Rohan Mahesh Awhad, Shivchander Sudalairaj, Kai Xu, Akash Srivastava
arXiv preprint, 2025
Rollout Roulette: A Probabilistic Inference Approach to Inference-Time Scaling of LLMs
Isha Puri, Shivchander Sudalairaj, Guangxuan Xu, Kai Xu, Akash Srivastava
arXiv preprint, 2025
Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling
Meihua Dang, Jiaqi Han, Minkai Xu, Kai Xu, Akash Srivastava, Stefano Ermon
arXiv preprint, 2025
Variational Russian Roulette for Deep Bayesian Nonparametrics
Kai Xu, Akash Srivastava, Charles Sutton
ICML, 2019

Alignment, Preference Learning, & Human Feedback

LAB: Large-Scale Alignment for ChatBots
Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo Pareja, Kai Xu, David D. Cox, Akash Srivastava
arXiv preprint, 2024
Dr. SoW: Density Ratio of Strong-over-Weak LLMs for Reducing the Cost of Human Annotation
Guangxuan Xu, Kai Xu, Shivchander Sudalairaj, Hao Wang, Akash Srivastava
arXiv preprint, 2024
Value-Augmented Sampling for Language Model Alignment and Personalization
Seungwook Han, Idan Shenfeld, Akash Srivastava, Yoon Kim, Pulkit Agrawal
arXiv preprint, 2024
Post-Processing Private Synthetic Data for Improving Utility on Selected Measures
Hao Wang, Shivchander Sudalairaj, John Henning, Kristjan Greenewald, Akash Srivastava
NeurIPS, 2023

Model Merging, Fine-Tuning, & Parameter Efficiency

Activation-Informed Merging of Large Language Models
Amin Heyrani Nobari, Kaveh Alim, Ali ArjomandBigdeli, Akash Srivastava, Faez Ahmed, Navid Azizan
arXiv preprint, 2025
Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning
Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Prateek Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, Akash Srivastava, et al.
arXiv preprint, 2025
Squat: Subspace-Orthogonal KV Cache Quantization
Hao Wang, Ligong Han, Kai Xu, Akash Srivastava
arXiv preprint, 2025
Hopscotch: Discovering and Skipping Redundancies in Language Models
Mustafa Eyceoz, Nikhil Shivakumar Nayak, Hao Wang, Ligong Han, Akash Srivastava
arXiv preprint, 2025
Unveiling the Secret Recipe: A Guide for Supervised Fine-Tuning Small LLMs
Aldo Pareja, Nikhil Shivakumar Nayak, Hao Wang, Krishnateja Killamsetty, Shivchander Sudalairaj, Wenlong Zhao, Seungwook Han, Abhishek Bhandwaldar, Guangxuan Xu, Kai Xu, Akash Srivastava, et al.
arXiv preprint, 2024

Diffusion Models & Generative Modeling

SODA: Spectral Orthogonal Decomposition Adaptation for Diffusion Models
Xinxi Zhang, Song Wen, Ligong Han, Felix Juefei-Xu, Akash Srivastava, Junzhou Huang, Vladimir Pavlovic, Hao Wang, Molei Tao, Dimitris Metaxas
WACV, 2025
DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models
Xiaoxiao He, Quan Dao, Ligong Han, Song Wen, Minhao Bai, Di Liu, Han Zhang, Martin Renqiang Min, Felix Juefei-Xu, Chaowei Tan, Akash Srivastava, et al.
arXiv preprint, 2024
Aligning Optimization Trajectories with Diffusion Models for Constrained Design Generation
Giorgio Giannone, Akash Srivastava, Ole Winther, Faez Ahmed
NeurIPS, 2023

Synthetic Data, Privacy, & Density Ratio Estimation

Differentially Private Synthetic Data Generation for Relational Databases
Kaveh Alimohammadi, Hao Wang, Ojas Gulati, Akash Srivastava, Navid Azizan
arXiv preprint, 2024
Private Synthetic Data Meets Ensemble Learning
Haoyuan Sun, Navid Azizan, Akash Srivastava, Hao Wang
arXiv preprint, 2023
Estimating the Density Ratio Between Distributions with High Discrepancy
Akash Srivastava, Seungwook Han, Kai Xu, Benjamin Rhodes, Michael U. Gutmann
arXiv preprint, 2023
Generative Ratio Matching Networks
Akash Srivastava, Michael U. Gutmann, Kai Xu, Charles Sutton
ICLR, 2020

Red-Teaming, Robustness, & Evaluation

Curiosity-Driven Red-Teaming for Large Language Models
Zhang-Wei Hong, Idan Shenfeld, Tsun-Hsuan Wang, Yung-Sung Chuang, Aldo Pareja, James Glass, Akash Srivastava, Pulkit Agrawal
arXiv preprint, 2024
On the Importance of Calibration in Semi-Supervised Learning
Charlotte Loh, Rumen Dangovski, Shivchander Sudalairaj, Seungwook Han, Ligong Han, Leonid Karlinsky, Marin Soljacic, Akash Srivastava
arXiv preprint, 2022
Mitigating Confirmation Bias in Semi-Supervised Learning via Efficient Bayesian Model Averaging
Charlotte Loh, Rumen Dangovski, Shivchander Sudalairaj, Seungwook Han, Ligong Han, Leonid Karlinsky, Marin Soljacic, Akash Srivastava
TMLR, 2023

Foundation Models for Planning, Design, & Systems

Compositional Foundation Models for Hierarchical Planning
Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenenbaum, Leslie Kaelbling, Akash Srivastava, Pulkit Agrawal
NeurIPS, 2023
Learning Joint Representations of Design and Performance Spaces
Amin Heyrani Nobari, Akash Srivastava, Dan Gutfreund, Kai Xu, Faez Ahmed
arXiv preprint, 2024
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Lyle Regenwetter, Akash Srivastava, Dan Gutfreund, Faez Ahmed
Computer-Aided Design, 2023

Lifelong Learning, Program Synthesis, & Modularity

Houdini: Lifelong Learning as Program Synthesis
Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, Swarat Chaudhuri
NeurIPS, 2018
A Probabilistic Framework for Modular Continual Learning
Lazar Valkov, Akash Srivastava, Swarat Chaudhuri, Charles Sutton
arXiv preprint, 2023
Synthesis of Differentiable Functional Programs for Lifelong Learning
Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, Swarat Chaudhuri
arXiv preprint, 2018

Core Generative Modeling & Bayesian ML

VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning
Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, Charles Sutton
NeurIPS, 2017
Autoencoding Variational Inference For Topic Models
Akash Srivastava, Charles Sutton
ICLR, 2017
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, Akash Srivastava
ICML, 2018
Akash Srivastava
PhD Thesis, University of Edinburgh, 2019

Applied / Cross-Domain Modeling

Learning to Deliver: A Foundation Model for Vehicle Routing
Samuel JK Chin, Matthias Winkenbach, Akash Srivastava
arXiv preprint, 2024
Urban Context and Delivery Performance
Maxwell Schrader, Navish Kumar, Esben Sorig, Soonmyeong Yoon, Akash Srivastava, Kai Xu, Maria Astefanoaei, Nicolas Collignon
arXiv preprint, 2024

For complete citation information and PDFs, visit my Google Scholar profile.