®%): THE UNIVERSITY

\@N- of EDINBURGH

VEEGAN: Reducing Mode Collapse
In GANs using Implicit Vartational Learning

[=]
Code

Lazar Valkov

L.Valkov@sms.ed.ac.uk

Akash Srivastava

akash.srivastava@ed.ac.uk

SETUP

o {z;}, represents training data where each z; € R? is drawn from an unknown
distribution p(x).

e A GAN is a neural network Gy that maps representation vectors z € R*, typi-
cally drawn from a standard normal distribution, to data items x € R”.

e Because this mapping defines an implicit probability distribution, training is
accomplished by introducing a second neural network D, called a discriminator,
whose goal is to distinguish samples from the generator to those from the data.

e The parameters of these networks are estimated by solving the minimax problem

max min Ogan (w,7) := E;[log o (D, (G~(2)))] + Egllog (1 — o (Dy(x))))
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e At the optimum, in the limit of infinite data and arbitrarily powerful networks,
we will have D, = logq,(x)/p(x), where ¢ is the density that is induced by
running the network GG on normally distributed input, and hence that ¢, = p.

MODE COLLAPSING

e Mode collapsing happens when samples from g¢-(z) capture only a few of the
modes of p(x).

e An intuition behind why mode collapse occurs is that the only information that

the objective function provides about 7 is mediated by the discriminator network
D,.

e Lor example, if D, is a constant, then Og,y, 1s constant with respect to «y, and so
learning the generator is impossible. When this situation occurs in a localized
region of input space, for example, when there is a specific type of image that
the generator cannot replicate, this can cause mode collapse.
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SOLUTION: VEEGAN TRAINING
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The main idea of VEEGAN is to introduce a second network Fp that we call the
Reconstructor, which is trained on the true data distribution and learns the

reverse feature mapping from data items x to representations z.

e We start by establishing that, — [ po(z) logpe(z) < O(~, 0) where,

O(7,0) = K L|gy(z|2)po(2)|lpe(z|x)p(x)] — Ellog po(2)] + Eld(z, Fa(z))].

Here all E are taken with respect to po(2)g,(x | 2).

e The function d denotes a loss function in representation space R, such as ls
loss. The third term is then an autoencoder in representation space.

RECONSTRUCTION CAN HELP BUT...
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e In this case, we cannot optimize O directly, because the KL divergence depends
on a density ratio which is unknown. We estimate this ratio using a discriminator
network,

Gy(2 | 2)po(2)

Dulna) =log e o)

e This allows us to estimate O as,

A

O<w777 (9) — N ZDw(Z 7339) + N Zd(z 7339)‘

e We train the discriminator network using,

OLr(w,7,0) = =B, [log (0 (D (2, 7)))] = Eg[log (1 — o (Dw(2,7)))].

(a) Suppose Fy is trained to approximately invert
(G~. Then applying Fjp to true data is likely to

(b) When Fj i1s trained to map the data to a Gaus-
sian distribution, then treating Fp o (G- as an au-

produce a non-Gaussian distribution, allowing us

to detect mode collapse.

toencoder provides learning signal to correct G7.

e Training the Reconstructor on the true data within the KL term and then
forcing it to reconstruct the generator output with the penalty function d, makes
the generator and reconstructor approximate inverses of each other.

Figure 1: Illustration of how a reconstructor network Fjy can help to detect mode collapse in a deep
generative network G,. The data distribution is p(z) and the Gaussian is py(z). See text for details.

RESULTS

Table 1: Sample quality and degree of mode collapse on mixtures of Gaussians. VEEGAN consistently
captures the highest number of modes and produces better samples.

2D Ring 2D Grid 1200D Synthetic
Modes % High Quality  Modes % High Quality  Modes % High Quality
(Max 8) Samples (Max 25) Samples (Max 10) Samples
GAN 1 99.3 3.3 0.5 1.6 2.0
ALI 2.8 0.13 15.8 1.6 3 5.4
Unrolled GAN 7.6 35.6 23.6 16 0 0.0
VEEGAN 3 52.9 24.6 40 5.5 28.29
Stacked-MNIST CIFAR-10
Modes (Max 1000) KL IvOM
DCGAN 99 3.4 | 0.00844 £ 0.002
ALI 16 5.4 0.0067 £ 0.004
Unrolled GAN 48.7 4.32 0.013 £ 0.0009
VEEGAN 150 2.95 0.0068 + 0.0001

Table 2: Degree of mode collapse, measured by modes captured and the inference via optimization
measure (IvOM), and sample quality (as measured by KL) on Stacked-MNIST and CIFAR. VEEGAN
captures the most modes and also achieves the highest quality.
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Hence resolving mode collapse.

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arranged in a ring (top) or a grid (bottom).
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Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.
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(a) Generated samples nearest to real images from CIFAR-10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALIL, Unrolled GAN, and
VEEGAN respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.





