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Abstract

Deep generative models can learn to generate realistic-looking images, but many of
the most effective methods are adversarial methods, which require careful balancing
of training between a generator network and a discriminator network. Maximum
mean discrepancy networks (MMD-nets) avoid this issue using the kernel trick,
but unfortunately they have not on their own been able to match the performance
of adversarial training. We present a new method of training MMD-nets, based
on learning a mapping of samples from the data and from the model into a lower
dimensional space, in which MMD training can be more effective. We call these
networks ratio matching MMD networks (RM-MMDnets). We train the mapping
to preserve density ratios between the densities over the low-dimensional space
and the original space. This ensures that matching the model distribution to the
data in the low-dimensional space will also match the original distributions. We
show that RM-MMDnets have better performance and better stability than recent
adversarial methods for training MMD-nets.

1 Introduction

Deep generative models (Kingma & Welling, 2013; Goodfellow et al., 2014) have been shown to
learn to generate realistic-looking images. These methods train a deep neural network, called a
generator, to transform samples from a noise distribution to samples from the data distribution. Most
methods use adversarial learning (Goodfellow et al., 2014), in which the generator is pitted against a
critic function, also called a discriminator, which is trained to distinguish between the samples from
the data distribution and from the generator. Upon successful training the two sets of samples become
indistinguishable with respect to the critic.

Maximum mean discrepancy (MMD) networks (Li et al., 2015; Dziugaite et al., 2015) are a class of
generative models that are trained to minimize the MMD between the true data distribution and the
model distribution. MMD networks are similar in spirit to generative adversarial networks (GANs)
(Goodfellow et al., 2014), in the sense that the MMD is defined by maximizing over a class of critic
functions. However, in contrast to GANs, where finding the right balance between generator and
critic is difficult, training is simpler for MMD networks because using the kernel trick the MMD can
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be estimated without the need to numerically optimize over critic functions. This avoids the need in
GANs to numerically solve a saddlepoint problem.

Unfortunately, although MMD networks work well on low dimensional data, these networks have
not on their own matched the performance of adversarial methods on higher dimensional datasets,
such as natural images (Dziugaite et al., 2015). Several authors (Li et al., 2017; Bińkowski et al.,
2018) suggest that a reason is that MMD is sensitive to the choice of kernel. Li et al. (2017) propose
a method called MMD-GAN, in which the critic maps the samples from the generator and the data
into a lower-dimensional representation, and MMD is applied in this transformed space. This can
be interpreted as a method for learning the kernel in MMD. The critic is learned adversarially by
maximizing the MMD at the same time as it is minimized with respect to the generator. This is much
more effective than MMD networks, but training MMD-GANs can be challenging, because the need
to balance training of the learned kernel and the generator can create a sensitivity to hyperparameter
settings. In practice, it is necessary to introduce several additional penalties to the loss function in
order for training to be effective.

In this work, we present a novel training method for MMD networks based on a new principle
for optimizing the critic. Like previous work, our goal is for the critic to map the samples into a
lower-dimensional space in which the MMD network estimator will be more effective. Our proposal
is that the critic should preserve density ratios, namely, the ratio of the true density to the model
density should be preserved under the mapping defined by the critic. If the critic is successful in
this, then matching the generator to the true data in the lower dimensional space will also match
the distributions in the original space. We call networks that have been trained using this criterion
ratio matching MMD networks (RM-MMDnets). This proposal builds on previous work by Sugiyama
et al. (2011) that considered linear dimensionality reduction for density ratio estimation. We show
empirically that our method is not only able to generate high quality images but by virtue of being
non-adversarial it avoids saddlepoint optimization and hence is more stable to train and robust to the
choice of hyperparameters.

2 Background and Related Work

Given data xi ∈ RD for i ∈ {1 . . . N} from a distribution of interest with density px, the goal of
deep generative modeling is to learn a parametrized function Gγ : Rh 7→ RD, called a generator
network, that maps samples z ∈ Rh where h < D from a noise distribution pz to samples from the
model distribution. Since Gγ defines a new random variable, we denote its density function by qx,
and also write xq = Gγ(z), where we suppress the dependency of xq on γ. The parameters γ of the
generator are chosen to minimize a loss criterion which encourages qx to match px.

2.1 Maximum Mean Discrepancy

Maximum mean discrepancy measures the discrepancy between two distributions as the maximum
difference between the expectations of a class of functions F , that is,

MMDF (p, q) = sup
f∈F

(Ep[f(x)]− Eq[f(x)]) , (1)

where E denotes expectation. If F is chosen to be a rich enough class, then MMD(p, q) = 0 implies
that p = q. Gretton et al. (2012) show that it is sufficient to choose F to be a unit ball within a
reproducing kernel Hilbert spaceR with kernel k. Given samples x1 . . . xN ∼ p and yi . . . yM ∼ q,
we can estimate MMDR as

ˆMMDR(p, q) =
1

N2

N∑
i=1

N∑
i′=1

k(xi, xi′)−
1

NM

N∑
i=1

M∑
j=1

k(xi, yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj , yj′). (2)

2.2 MMD networks and MMD-GANs

Li et al. (2015) and Dziugaite et al. (2015) independently proposed MMD networks, which use the
MMD criterion to train a deep generative model. Unlike f -divergences, MMD is well defined even
for distributions that do not have overlapping support, which is an important consideration for training
generative models (Arjovsky et al., 2017). Therefore, MMD networks use (2) in order to minimize
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the discrepancy between the distributions qx and px with respect to Gγ . However, the sample quality
of MMD networks generally degrades for higher dimensional or color image datasets (Li et al., 2015).

To address this problem, Li et al. (2017) introduce MMD-GANs, which use a critic fθ : RD 7→ RK
to map the samples to a lower dimensional space RK , and train the generator to minimize MMD
in this reduced space. This can be interpreted as learning the kernel function for MMD, because if
fθ is injective and k0 is a kernel in RK , then k(x, x′) = k0(fθ(x), fθ(x

′)) is a kernel in RD. This
injectivity constraint on fθ is imposed by introducing another deep neural network f ′φ, which is
trained to approximately invert fθ using an auto-encoding penalty. The critic fθ is trained using an
adversarial criterion, but this then requires numerical saddlepoint optimization, and avoiding this was
one of the main attractions of MMD in the first place.

Successfully training fθ in practice required a penalty term called feasible set reduction on the class
of functions that fθ can learn to represent. Defining p̄ and q̄ respectively as the distributions of the
random variables obtained by applying fθ to px and qx, the training criteria for the critic and the
generator in MMD-GANs are

L(θ, φ) = MMD
[
p̄
(
fθ(x)

)
, q̄
(
fθ(Gγ(z))

)]
− λ1d

[
x, f ′φ(fθ(Gγ(z)))

]
(3)

+ λ2 min
[
E[fθ(x)]− E[fθ(Gγ(z))], 0

]
L(γ) = MMD

[
p̄
(
fθ(x)

)
, q̄
(
fθ(Gγ(z))

)]
+ λ3 min

[
E[fθ(x)]− E[fθ(Gγ(z))], 0

]
,

where x ∼ px and z ∼ pz are samples from their respective distributions. The function d denotes
an expected auto-encoding penalty that ensures that f is approximately injective. Furthermore, f
is restricted to be k-Lipschitz continuous by using a low learning rate and explicitly clipping the
gradients during update steps of f akin to WGAN (Arjovsky et al., 2017).

Our work is similar in spirit to MMD-GANs, in that we will also learn a critic function to improve
the performance of MMD networks. The main differences are that we will not use an adversarial
criterion to learn fθ, and that we do not require the function k(fθ(·), fθ(·)) to be a kernel function.
These differences will greatly simplify our training algorithm, as we do not require an additional
autoencoding penalty or feasible set reduction as in their method. We will also show (Section 4) that
our method is more stable in training.

2.3 Dimensionality Reduction for Density Ratio Estimation

Sugiyama et al. (2011) suggest that density ratio estimation for distributions p and q over RD can
be more accurately done in lower dimensional subspaces RK . They propose to first learn a linear
projection to a lower dimensional space by maximizing an f -divergence between the distributions p̄
and q̄ of the projected data and then estimate the ratio of p̄ and q̄ (using direct density ratio estimation).
They showed that the projected distributions preserve the original density ratio. Our method builds
on this insight, generalizing it to non-linear projections and incorporating it into a method for deep
generative modeling.

3 Method

Our aim will be to enjoy the advantages of MMD networks, but to improve their performance by
mapping the data into a lower-dimensional space, using a critic network fθ, before computing the
MMD criterion. Because MMD with a fixed kernel performs well for lower-dimensional data (Li et al.,
2015; Dziugaite et al., 2015), we hope that by choosing K < D, we will improve the performance of
the MMD network. Instead of training fθ using an adversarial criterion like MMD-GAN, we aim at a
more stable training method by introducing a different principle for training the critic.

More specifically, we train fθ to minimize the squared ratio difference, that is, the difference between
density ratios in the original space and in the low-dimensional space induced by fθ (Section 3.1).
More specifically, let q̄ be the density of the transformed simulated data, i.e., the density of the
random variable fθ(Gγ(z)), where z ∼ pz . Similarly let p̄ be the density of the transformed data,
i.e., the density of the random variable fθ(x). The squared ratio difference is minimized when θ so
that px/qx equals p̄/q̄. The motivation is that if density ratios are preserved by fθ, then matching the
generator to the data in the transformed space will also match it in the original space (Section 3.3).
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The capacity of fθ should be chosen to strike a trade-off between dimensionality reduction and ability
to approximate the ratio. If the data lie on a lower-dimensional manifold in RD, which is the case
for e.g. natural images, then it is reasonable to suppose that we can find a critic that strikes a good
trade-off.

To compute this criterion, we need to estimate density ratios p̄/q̄, which can be done in closed form
using MMD (Section 3.2). Our method then alternates stochastic gradient descent (SGD) steps
between training the critic and the generator. The generator is trained as an MMD network to match
the transformed data {fθ(xi)} with transformed outputs from the generator {f(Gγ(zi)} in the lower
dimensional space. These gradient steps are alternated with SGD steps on the the critic (Section 3.3).

3.1 Training the Critic using Squared Ratio Difference

Our principle is to choose fθ so that the resulting densities p̄ and q̄ preserve the density ratio between
px and qx. We will choose fθ to minimize the distance between the two density ratio functions

rx(x) = px(x)/qx(x) rθ(x) = p̄(fθ(x))/q̄(fθ(x)).

One way to measure how well f preserves density ratios is to use the squared distance

D∗(θ) =

∫
qx(x)

(
px(x)

qx(x)
− p̄(fθ(x))

q̄(fθ(x))

)2

dx. (4)

This objective is minimized only when the ratios match exactly, that is, when rx = rθ for all x
in the support of qx. Clearly a distance of zero can be trivially achieved if K = D and if fθ is
the identity function. But nontrivial optima can exist as well. For example, suppose that px and
qx are “intrinsically low dimensional” in the following sense. Suppose K < D, and consider two
distributions p0 and q0 over RK , and an injective map T : RK → RD. Suppose that T maps samples
from p0 and q0 to samples from px and qx, by which we mean px(x) = J(DT )p0(T−1(x)), and
similarly for qx. Here J(DT ) denotes the Jacobian J(DT ) =

√
|δTδT>| of T . Then we have that

D∗ is minimized to 0 when fθ = T−1.

Interestingly, we can interpret D∗ in a different way, which justifies our terminology of referring to
fθ as a critic function. Expanding (4) and cancelling terms yields

D∗(θ) = C +

∫
q̄(fθ(x))

(
p̄(fθ(x))

q̄(fθ(x))

)2

dx− 2

∫
p̄(fθ(x))

p̄(fθ(x))

q̄(fθ(x))
dx, (5)

where C does not depend on θ. This means that minimizing D∗ is equivalent to maximizing the
Pearson divergence (Sugiyama et al., 2011)

PD(p̄, q̄) =

∫
q̄(fθ(x))

(
p̄(fθ(x))

q̄(fθ(x))
− 1

)2

dx (6)

between p̄ and q̄. So we can alternatively interpret our squared ratio distance objective as preferring
fθ so that the low-dimensional distributions p̄ and q̄ are maximally separated.

Therefore D∗ can be minimized empirically using samples xq1 . . . x
q
N ∼ qx, yielding the critic loss

function

L(θ) =
1

N

N∑
i=1

[rθ(x
q
i )− 1]2. (7)

Optimizing this requires a way to estimate rθ(x
q
i ), which we present in the next section.

3.2 Density Ratio Estimation

In terms of estimating the density ratio rθ, we have several choices of estimators (Sugiyama et al.,
2012). In our work, however, we employ the MMD criterion because this allows a closed-form
estimate. The MMD estimator of rθ (Sugiyama et al., 2012) is given by optimizing

min
r∈R

∥∥∥∥∫ k(y; .)p̄(y)dy −
∫
k(y; .)r(y)q̄(y)dy

∥∥∥∥2
R
, (8)
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Figure 1: Comparison of Pearson divergence maximisation and direct ratio maximisation on the
effect of Pearson divergence in a 2D setting with exact density ratios. The x-axis is the iteration and
the y-axis is the Pearson divergence. The green line corresponds to maximization of (10) and the
blue line corresponds to that of (11).

where k is a kernel function. It is easy to see that at the minimum, we have r = p̄/q̄. Notice
that to compute (7), we need the value of rθ only for the points xq1 . . . x

q
N . In other words, we

need to approximate the vector rq,θ = [rθ(x
q
1) . . . rθ(x

q
N )]T . Following Sugiyama et al. (2012), we

replace the integrals in (8) with Monte Carlo averages over the points xq1 . . . x
q
N and over points

xp1 . . . x
p
N ∼ px. The minimizing values of rq,θ can then be computed as

r̂q,θ = K−1q,qKq,p111. (9)

Here Kq,q and Kq,p denote the Gram matrices defined by [Kq,q]i,j = k(fθ(x
q
i ), fθ(x

q
j)) and

[Kq,p]i,j = k(fθ(x
q
i ), fθ(x

p
j )). Substituting these estimates into (7), we get

L̂(θ) =
1

N
‖r̂q,θ − 1‖2. (10)

This objective can be maximised to learn the critic fθ. We see that this is an approximation of
the Pearson divergence PD(p̄, q̄) in that we are both averaging over samples from qx, and we are
approxmitaing the density ratio. Thus maximising this objective would lead to preservation in density
ratio (Sugiyama et al., 2011).

Empirical Estimation: Maximization of the estimated Pearson divergence L̂ is challenging be-
cause for distributions with non-overlapping support, (10) has a local maximum at 1 when the ratio
r̂q,θ = 0. This is due to the fact that for densities with non-overlapping support, the MMD-based
ratio estimator of their densities is close to zero. We can overcome this by instead maximising the
MMD-based density ratio estimator directly:

L̂1(θ) = r̂Tq,θ111. (11)

We can maximize this instead because the gradient ∇L̂1 is also an ascent direction for L̂ if r̂q,θ ≥ 1.
Figure 1 plots how Pearson divergence changes during the course of optimization of (10) and (11).
As can be seen, if (10) is maximized, the Pearson divergence gets stuck at the local maximum 1 and
does not increase. However, directly optimizing (11) leads to a large Pearson divergence after 20 000
iterations. Additionally, since the MMD-based ratio estimator is not guaranteed to be non-negative,
the direct maximisation approach also helps to resolve this issue. Therefore, in practice, we train fθ
by maximising (11).

3.3 Generator Loss

To train the generator networkGγ , we minimize the MMD in the low-dimensional space, transforming
both the generated data and the true data by fθ. In other words, we minimize the MMD between p̄
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and q̄. We sample points z1 . . . zM ∼ pz from the input distribution of the generator. Then using the
empirical estimate (2) of the MMD, we define the generator loss function as

L̂2(γ) =
1

N2

N∑
i=1

N∑
i′=1

k(fθ(xi), fθ(xi′))−
1

NM

N∑
i=1

M∑
j=1

k(fθ(xi), fθ(Gγ(zj))) (12)

+
1

N2

M∑
j=1

M∑
j′=1

k(fθ(Gγ(zj)), fθ(Gγ(zj′))),

which we minimize with respect to γ for a fixed critic fθ. Finally, the overall training proceeds by
alternating SGD steps between L̂1 and L̂2. Unlike WGAN (Arjovsky et al., 2017) and MMD-GAN,
we do not require the use of gradient clipping, feasible set reduction and autoencoding regularization
terms from (3). Our algorithm is a simple three step iterative process.

while not converged do
Estimate ratio r̂q,θ using (9);
Update the projection function parameters θ via (11) using one step of gradient ascent;
Update the generator parameters γ via (12) using one step of gradient descent;

end
Algorithm 1: RM-MMDnet Algorithm

Convergence: If we succeed in matching the generator to the true data in the low-dimensional space,
then we have also matched the generator to the data in the original space, in the limit of infinite data.
To see this, suppose that we have γ∗ and θ∗ such that D∗(θ∗) = 0 and that My = MMD(p̄, q̄) = 0.
Then for all x, we have rx(x) = rθ∗(x) because D∗(θ∗) = 0, and that rθ∗(x) = 1, because My = 0.
This means that rx(x) = 1, so we have that px = qx.

4 Experiments

In this section we empirically compare RM-MMDnets against MMD-GANs and vanilla GANs, on
the Cifar10 and CelebA image datasets. To evaluate the sample quality and resilience against mode
dropping, we used Frechet Inception Distance (FID) (Heusel et al., 2017).3 Like the Inception Score
(IS), FID also leverages a pre-trained Inception Net to quantify the quality of the generated samples,
but it is more robust to noise than IS and can also detect intra-class mode dropping (Lucic et al., 2017).
FID first embeds both the real and the generated samples into the feature space of a specific layer of
the pre-trained Inception Net. It further assumes this feature space to follow a multivariate Gaussian
distribution and calculates the mean and covariance for both sets of embeddings. The sample quality
is then defined as the Frechet distance between the two Gaussian distributions, which is

FID(xp, xq) = ‖µxp
− µxq

‖22 + Tr(Σxp
+ Σxq

− 2(Σxp
Σxq

)
1
2 ),

where (µxp ,Σxp), and (µxq ,Σxq ) are the mean and covariance of the sample embeddings from the
data distribution and model distribution. We report FID on a held-out set that was not used to train
the models. We run all the models three times from random initializations and report the mean and
standard deviation of FID over the initializations. To ensure that we are fairly comparing with Li
et al. (2017), who report IS rather than FID, we computed IS values on the Cifar10 data set as well.
See the appendix.

Architecture: We test all the methods on the same architectures for the generator and the critic, namely
a four-layer DCGAN architecture (Radford et al., 2015), because this has been consistently shown to
perform well for the datasets that we use. Additionally, to study the effect of changing architecture,
we also evaluate a slightly weaker critic, with the same number of layers but half the number of
hidden units. Details of the architectures are provided in the appendix.

Hyperparameters: To facilitate fair comparison with MMD-GAN we set all the hyperparameters
shared across the three methods to the values used in Li et al. (2017). Therefore, we use a learning rate
of 5e−5 and set the batch size to 64. For the MMD-GAN and RM-MMDnets, we used the same set
of RBF kernels that were used in Li et al. (2017). We used the implementation of MMD-GANs from

3We use a standard implementation available from https://github.com/bioinf-jku/TTUR

6

https://github.com/bioinf-jku/TTUR


Table 1: Sample quality (measured by FID; lower is better) of RM-MMDnets compared to GANs.
Archtitecture Dataset MMD-GAN GAN RM-MMDnet
DCGAN Cifar10 40 (0.56) 26.82 (0.49) 24.85 (0.94)
Small Critic Cifar10 210.85 (8.92) 31.64 (2.10) 24.82 (0.62)
DCGAN CelebA 41.105 (1.42) 30.97 (5.32) 27.04 (4.24)

Table 2: Sample quality (FID) of fully convolutional architecture originally used for MMD-GAN by
Li et al. (2017).

Architecture Dataset MMD-GAN
Fully Convolutional Cifar10 38.39 (0.28)
Fully Convolutional CelebA 40.27 (1.32)

Figure 2: Nearest training images to random samples from an RM-MMDnet trained on Cifar10. In
each column, the top image is a sample from the generator, and the images below it are the nearest
neighbors.

Li et al. (2017).4 We leave all the hyper-parameters that are only used by MMD-GAN, namely the
weights λ1, λ2, and λ3 from the MMD-GAN objective (3), to the settings in the authors’ code. For
RM-MMDnets, we choose K = h, that is, the critic dimensionality equals the input dimensionality
of the generator. We present an evaluation of hyperparameter sensitivity in Section 4.2.

4.1 Image Quality

We now look at how our method competes against GANs and MMD-GANs on sample quality and
mode dropping on Cifar10 and CelebA datasets. Results are shown in Table 1. Clearly, RM-MMDnets
outperform both baselines. For CelebA, we do not run experiments using the weaker critic, because
this is a much larger and higher-dimensional dataset, so a low-capacity critic is unlikely to work well.

To provide evidence that RM-MMDnets are not simply memorizing the training set, we note that
we measure FID on a held-out set, so a network that memorized the training set would be likely to
have poor performance. For additional qualitative evidence of this, see Figure 2. This figure shows
the five nearest neighbors from the training set for 20 randomly generated samples from the trained
generator of our RM-MMDnet. None of the generated images have an exact copy in the training set,
and qualitatively the 20 images appear to be fairly diverse.

Note that our architecture is different from that used in the results of Li et al. (2017). That work
uses a fully convolutional architecture for both the critic and the generator, which results in an
order of magnitude more weights. This makes a large comparison more expensive, and also risks
overfitting on a small dataset like Cifar10. However, for completeness, and to verify the fairness
of our comparison, we also report the FID that we were able to obtain with MMD-GAN on this
fully-convolutional architecture in Table 2. Compared to our experiments using MMD-GAN to train
the DCGAN architecture, the performance of MMD-GAN with the fully convolutional architecture
remains unchanged for the larger CelebA dataset. On Cifar10, not surprisingly, the larger fully

4Available at https://github.com/OctoberChang/MMD-GAN.
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Figure 3: Hyper-parameter sensitivity of MMD-GAN, GAN and RM-MMDnets on Cifar10 dataset.
Sample quality measured by FID.

Table 3: Performance of MMD-GAN (Inception scores; larger is better) for MMD-GAN with and
without additional penalty terms: feasible set reduction (FSR) and the autoencoding loss (AE). The
full MMD-GAN method is MMD+FSR+AE.

Batch Size MMD-GAN = MMD+FSR+AE MMD+FSR MMD+AE MMD
64 5.35 (0.05) 5.40 (0.04) 3.26 (0.03) 3.51 (0.03)
300 5.43 (0.03) 5.15 (0.06) 3.68 (0.22) 3.87 (0.03)

convolutional architecture performs slightly better than the DCGAN architecture trained using MMD-
GAN. The difference in FID between the two different architectures is relatively small, justifying our
decision to compare the generative training methods on the DCGAN architecture.

4.2 Sensitivity to Hyperparameters

GAN training can be sensitive to the learning rate (LR) and the batch size used for training (Lucic
et al., 2017). We examine the effect of learning rates and batch sizes on the performance of all
three methods. Figure 3a compares the performance as a function of the learning rates. We see that
RM-MMDnets are much less sensitive to the learning rate than MMD-GAN, and are about as robust
to changes in the learning rate as a vanilla GAN. MMD-GAN seems to be especially sensitive to this
hyperparameter. We suggest that this might be the case since the critic in MMD-GAN is restricted to
the set of k-Lipschitz continuous functions using gradient clipping, and hence needs lower learning
rates. Similarly, Figure 3b shows the effect of the batch size on the three models. We notice that all
models are slightly sensitive to the batch size, and lower batch size is in general better for all three
methods.

4.3 Stability of MMD-GANs

For MMD-GANs, we evaluate the effect of the various stabilization techniques used for training,
namely the autoencoder penalty (AE) and the feasible set reduction (FSR) techniques from (3) on
the Cifar10 data over two settings of the batch size. Table 3 shows the results. The performance of
MMD-GAN training clearly relies heavily on FSR. This penalty not only stabilizes the critic but it
can also provides additional learning signal to the generator. Because these penalties are important to
the performance of MMD-GANs, it requires tuning several weighting parameters, which need to be
set carefully for successful training.

4.4 Effect of the Critic Dimensionality

We examine how changing the dimensionality K of the critic affects the performance of our method.
We use the Cifar10 data. Results are shown in Figure 3c. Interestingly, we find that there are two
regimes: the output dimensionality steadily improves the FID until K = 1000, but larger values
sharply degrade performance. This agrees with the intuition in Section 3.1 that dimensionality
reduction is especially useful for an “intrinsically low dimensional” distribution.
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5 Summary

We propose a new criterion for training deep generative networks using the maximum mean dis-
crepancy (MMD) criterion. While MMD networks alone fail to generate high dimensional or color
images of good quality, their performance can be greatly improved by training them under a low
dimensional mapping. We propose a novel training method for learning this mapping that is based
on matching density ratios, which leads to sizeable improvements in performance compared to the
recently proposed adversarial methods for training MMD networks.
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