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Abstract
The Pachinko Allocation Machine (PAM) is a
deep topic model that allows representing rich
correlation structures among topics by a di-
rected acyclic graph over topics. Because of
the flexibility of the model, however, approx-
imate inference is very difficult. Perhaps for
this reason, only a small number of potential
PAM architectures have been explored in the
literature. In this paper we present an effi-
cient and flexible amortized variational infer-
ence method for PAM, using a deep inference
network to parameterize the approximate pos-
terior distribution in a manner similar to the
variational autoencoder. Our inference method
produces more coherent topics than state-of-
art inference methods for PAM while being an
order of magnitude faster, which allows explo-
ration of a wider range of PAM architectures
than have previously been studied.

1 Introduction

Topic models are widely used tools for explor-
ing and visualizing document collections. Sim-
pler topic models, like latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003), capture correla-
tions among words but do not capture correlations
among topics. This limits the model’s ability to
discover finer-grained hierarchical latent structure
in the data. For example, we expect that very spe-
cific topics, such as those pertaining to individ-
ual sports teams, are likely to co-occur more often
than more general topics, such as a generic “poli-
tics” topic with a generic “sports” topic.

A popular extension to LDA that captures topic
correlations is the Pachinko Allocation Machine
(PAM) (Li and McCallum, 2006). PAM is es-
sentially “deep LDA”. It is defined by a directed
acyclic graph (DAG) in which each leaf node de-
notes a word in the vocabulary, and each internal
node is associated with a distribution over its chil-
dren. The document is generated by sampling, for

each word, a path from the root of the DAG to a
leaf. Thus the internal nodes can represent distri-
butions over topics, so-called “super-topics”, and
so on, thereby representing correlations among
topics.

Unfortunately PAM introduces many latent
variables — for each word in the document, the
path in the DAG that generated the word is latent.
Therefore, traditional inference method, such as
Gibbs sampling and decoupled mean-field varia-
tional inference become significantly more expen-
sive. This not only affects the scale of data sets
that can be considered, but more fundamentally
the computational cost of inference makes it diffi-
cult to explore the space of possible architectures
for PAM. As a result, to date only relatively sim-
ple architectures have been studied in the literature
(Li and McCallum, 2006; Mimno et al., 2007; Li
et al., 2012).

We present what is, to the best of our knowl-
edge, the first variational inference method for
PAM, which we call dnPAM. Unlike collapsed
Gibbs, dnPAM can be generically applied to any
PAM architecture without the need to derive a new
inference algorithm, allowing much more rapid
exploration of the space of possible model archi-
tectures. dnPAM is an amortized inference follow-
ing the learning principle of variational autoen-
coders, which means that the variational distribu-
tion is parameterized by a deep network, which is
trained to perform accurate inference. We find that
dnPAM is not only an order of magnitude faster
than collapsed Gibbs, but even returns topics with
comparable or greater coherence. The dramatic
speedup in inference time comes from the amor-
tization of the learning cost via learning a neu-
ral network to produce posterior parameter instead
of learning these parameters directly. This effi-
ciency in inference enables exploration of more
complex and deeper PAM models than have pre-



viously been possible.
As a demonstration of this, as our second con-

tribution we introduce a mixture of PAM model,
where each component distribution of the mixture
is represented by a PAM. By mixing PAMs with
varying number of topics, this model captures the
latent structure in the data at many different levels
of granularity that decouples general broad topics
from the more specific ones.

Like other variational autoencoders (VAEs)
(Kingma and Welling, 2013; Rezende et al., 2014),
our model also suffers from the posterior collaps-
ing (van den Oord et al., 2017) what is sometime
also referred to as component collapsing (Dinh
and Dumoulin, 2016) and slow training due to low
learning rates. We present an analysis of these is-
sues in the context of topic modeling and propose
normalization based solution to alleviate them.

2 Latent Dirichlet Allocation

LDA represents each document w in a collection
as a mixture of topics. Each topic vector βk is a
distribution over the vocabulary, that is, a vector
of probabilities, and β = (β1 . . . βK) is the ma-
trix of the K topics. Every document is then mod-
eled as an admixture of the topics. The genera-
tive process is to first sample a proportion vector
θ ∼ Dirichlet(α), and then for each word at posi-
tion n, sampling a topic indicator zn ∈ {1, . . .K}
as zn ∼ Categorical(θ), and finally sampling the
word index wn ∼ Categorical(βzn).

2.1 Deep LDA: Pachinko Allocation Machine

PAM is a class of topic models that extends LDA
by modeling correlations among topics. A partic-
ular instance of a PAM represents the correlation
structure among topics by a DAG in which the leaf
nodes represent words in the vocabulary and the
internal nodes represent topics. Each node s in the
DAG is associated with a distribution θs over its
children, which has a Dirichlet prior. There is no
need to differentiate between nodes in the graph
and the distributions θs, so we will simply take
{θs} to be the node set of the graph. To gener-
ate a document in PAM, for each word we sample
a path from the root to a leaf, and output the word
associated with that leaf.

More formally, we present the special case of
4-PAM, in which the DAG is a 4-partite graph.
It will be clear how to generalize this discussion
to arbitrary DAGs. In 4-PAM, the DAG con-

sists of a root node θr which is connected to chil-
dren θ1 . . . θS called super-topics. Each super-
topic θs is connected to the same set of children
β1 . . . βK called subtopics, each of which are fully
connected to the vocabulary items 1 . . . V in the
leaves.

A document is generated in 4-PAM as follows.
First, a single matrix of subtopics β are gener-
ated for the entire corpus as βk ∼ Dirichlet(α0).
Then, to sample a document w, we sample child
distributions for each remaining internal node in
the DAG. For the root node, θr is drawn from
a Dirichlet prior θr ∼ Dirichlet(αr), and simi-
larly for each super-topic s ∈ {1 . . . S}, the su-
pertopic θs is drawn as θs ∼ Dirichlet(αs). Fi-
nally, for each word wn, a path is sampled from
the root to the leaf. From the root, we sam-
ple the index of a supertopic zn0 ∈ {1 . . . S} as
zn0 ∼ Categorical(θr), followed by a subtopic
index zn2 ∈ {1 . . .K} sampled as zn2 ∼
Categorical(βzn1), and finally the word is sampled
as wn ∼ Categorical(βzn1). This process can be
written as a density

P (w, z, θ |α,β) = p(θr|αr)
S∏
s=1

P (θs|αs) (1)

×
∏
n

p(zn1|θr)p(zn2|θzn1)p(wn|βzn2).

It should be easily seen how this process can be
extended to arbitrary `-partite graphs, yielding the
`-PAM model, in which case LDA exactly corre-
sponds to 3-PAM, and also to arbitrary DAGs.

3 Mixture of PAMs

The main advantage of the inference framework
we propose is that it allows easily exploring the
design space of possible structures for PAM. As
a demonstration of this, we present a word-level
mixture of PAMs that allows learning finer grained
topics than a single PAM, as some mixture com-
ponents learn topics that capture the more general,
global topics so that other mixture components can
focus on finer-grained topics.

We describe a word-level mixture of M PAMs
P1 . . . PM , each of which can have a different
number of topics or even a completely different
DAG structure. To generate a document under this
model, first we sample an M -dimensional docu-
ment level mixing proportion θr ∼ Dirichlet(αr).
Then, for each word wn in the document, we



Figure 1: Top: A and B show randomly sampled top-
ics from MoLDA(10:50). Bottom: C and D show ran-
domly sampled topics from LDA with 10 topics and
50 topics on Omniglot. Notice that by using a mixture,
the MoLDA can decouple the higher level structure (A)
from the lower-level details(B).

choose one of the PAM models by sampling m ∼
Categorical(θr) and then finally sample a word by
sampling a path through Pm as described in the
previous section. This model can be expressed as
a general PAM model in which the root node θr
is connected to the root nodes of each of the M
mixture components. If each of the mixture com-
ponents are 3-PAM models, that is LDA, then we
call the resulting model a mixture of LDA models
(MoLDA).1

The advantage of this model is that if we
choose to incorporate different mixture compo-
nents with different numbers of topics, we find
that the components with fewer topics explain the
coarse-grained structure in the data, freeing up
the other components to learn finer grained top-
ics. For example, the Omniglot dataset contains
28x28 images of handwritten alphabets from arti-
ficial scripts. In Figure 1, panels (C) and (D) are
visualization of the latent topics that are generated
using vanilla LDA with 10 and 50 topics, respec-
tively. Because we are modelling image data, each
topic can also be visualized as an image. Panels
(A) and (B) show the topics from a single MoLDA
with two components, one with 10 topics and one
with 50 topics. It is apparent that the MoLDA

1It would perhaps be more proper to call this model an
admixture of LDA models.

topics are sharper, indicating that each individual
topic is capturing more information about the data.
The mixture model allows the two LDAs being
mixed to focus exclusively on higher (for 10 top-
ics) and lower (for 50 topics) level features while
modeling the images. On the other hand, the top-
ics in the vanilla LDA need to account for all the
variability in the dataset using just 10 (or 50) top-
ics and therefore are fuzzier.

4 Inference

Probabilistic inference in topic models is the task
of computing posterior distributions p(z|w,α,β)
over the topic assignments for words, or over the
posterior p(θ|w,α,β) of topic proportions for
documents. For all practical topic models, this
task is intractable. Commonly used methods in-
clude Gibbs sampling (Li and McCallum, 2006;
Blei et al., 2004), which can be slow to converge,
and variational inference methods such as mean
field (Blei et al., 2003; Blei and Lafferty, 2006),
which sometimes sacrifice topic quality for com-
putational efficiency. More fundamentally, these
families of approximate inference algorithms tend
to be model specific and require extensive math-
ematical sophistication on the practitioner’s part
since even the slightest changes in model assump-
tions may require substantial adjustments to the in-
ference. The time required to derive new approx-
imate inference algorithms dramatically slows ex-
plorations through the space of possible models.

In this work we present a generic, amortized ap-
proximate inference method dnPAM for learning
in the PAM family of models, that is extremely
fast, flexible and accurate. The inference method
is flexible in the sense that it can be generically ap-
plied to any DAG structure for PAM, without the
need to derive a new variational update. The main
idea is that we will approximate the posterior dis-
tribution p(θs|w,α,β) for each super-topic θs by
a variational distribution q(θs|w). Unlike stan-
dard mean field approaches, in which q(θs|w) has
an independent set of variational parameters for
each document in the corpus, the parameters of
q(θs|w) will be computed by an inference net-
work, which is a neural network that takes the doc-
ument w as input, and outputs the parameters of
the variational distribution. This is motivated by
the observation that similar documents can be de-
scribed well by similar posterior parameters.

In dnPAM, we seek to approximate the poste-



rior distribution P (θ|w,α,β), that is, the paths
zn for each word are integrated out. Note that this
is in contrast to previous collapsed Gibbs meth-
ods for PAM (Li and McCallum, 2006), which
integrate out θ using conjugacy. To simplify no-
tation, we will describe dnPAM for the special
case of 4-PAM, but it will be clear how to gen-
eralize this discussion to arbitrary DAGs. So
for 4-PAM, we have θ = (θr, θ1 . . . θS). We
introduce a variational distribution q(θ|w) =
q(θr|w)q(θ1|w) . . . q(θS |w).

To choose the best approximation q(θ|w), we
construct a lower bound to the evidence (ELBO)
using Jensen’s inequality, as is standard in varia-
tional inference. For example, the log-likelihood
function log p(w|α, β) for the 4-PAM model (1)
can be lower bounded by

L =− KL[q(θr|w)||p(θr|αr)]

−
S∑
s=1

KL[q(θs|w)||p(θs|αs)]

+ E

[∑
n

log p(wn|θ, β)

]
,

(2)

where the expectation is with respect to the varia-
tional posterior q(θ|w).

dnPAM uses stochastic gradient descent to max-
imize this ELBO to infer the variational param-
eters and learn the model parameters. To finish
describing the method, we must describe how q is
parameterized, which we do next. For the subtopic
parameters β, we learn these using variational EM,
that is, we maximize L with respect to β. It would
be a simple extension to add a variational distribu-
tion over β if this was desired.

Re-parameterizing Dirichlet Distribution:
The expectation over the second term in equation
(2) is in general intractable and therefore we
approximate it using a special type of Monte-
Carlo (MC) method (Kingma and Welling, 2013;
Rezende and Mohamed, 2015) that employs the
re-parametrization-trick (Williams, 1992) for
sampling from the variational posterior. But this
MC-estimate requires q(θ|w) to belong to the
location-scale family which excludes Dirichlet
distribution. Recently, some progress has been
made in the re-parametrization of distributions
like Dirichlet (Ruiz et al., 2016) but in this
work, following Srivastava and Sutton (2017)
we approximate the posterior with a logistic

normal distribution. First, we construct a Laplace
approximation of the Dirichlet prior in the soft-
max basis, which allows us to approximate the
posterior distribution using a Gaussian that is
in the location-scale family. Then in order to
sample θ’s from the posterior in the simplex basis
we apply the softmax transform to the Gaussian
samples. Using this Laplace approximation trick
also allows handling different prior assump-
tions, including other non-location-scale family
distributions.

Amortizing Super-Topics: As mentioned
above, in PAM the super topics need to be
sampled for each document in the corpus. This
presents a bottleneck in speeding up posterior
inference via Gibbs sampling or DMFVI as the
number of parameters to be learned increase
drastically with data compared to a typical LDA.
We design our inference method to tackle this
bottleneck such that the number of posterior
parameters to be learned do not directly depend
on the number of documents in the corpus.

dnPAM Inference Network Recently Srivas-
tava and Sutton (2017) amortized the cost of
learning posterior parameter in LDA by using
a feedforward Multi-layer Perceptron (MLP) to
generate the parameters for the posterior dis-
tribution over the topic proportion vector θ.
Like them, we model the posterior q(θr|w) as
LN(θ; fµ(w), fu(w)) where fµ and fu are neu-
ral networks that generate the parameters for the
logistic normal distribution. But, since their in-
ference network does not allow sampling top-
ics, therefore they assumed the topics to be fixed
model parameters. We now introduce an alter-
native inference network architecture that is de-
signed to efficiently sample all the posterior pa-
rameters that need to be inferred in PAMs includ-
ing topics.

For generality we assume that at the sub-topics
at the lowest level are sampled only once for the
corpus. To generate the parameters of the vari-
ational posterior distributions at each of the lev-
els above, we use one MLP per level. For exam-
ple in the case of 4-PAM, the parameters of the
variational posteriors (q(θ1|w), ..., q(θs|w)) over
the super-topics are generated from a single MLP.
These MLPs are trained using the VAE-based vari-
ational learning principle for topic models (Srivas-
tava and Sutton, 2017) and then sampled from us-



ing the process for Dirichlet distribution described
above to generate θ’s and the super-topics.

Note that the Dirichlet distribution is a conju-
gate prior to the multinomial distribution. This
fact can be used to leverage the modern GPU-
based computation to generate the posterior pa-
rameters for the nodes in the next lower level since
it only involves a dot-product. Therefore we stack
all the topic vectors (each sampled from its respec-
tive variational posterior) in a 3-D tensor and us-
ing a custom implementation for this dot-product 2

we gain significant reduction in training time. We
want to point out that the result of above process
can also be seen as construction of MLPs on the
fly by sampling Dirichlet vectors from our infer-
ence networks and stacking them to form weight
matrices of the MLPs.

The decoder in the case of PAM is just a dot
product between the sample from the output dis-
tribution of the inference network θ and the sub-
topic matrix β. This makes the entire class of
PAM-type mixed membership models permeable
to deep learning while being Bayesian about the
latent beliefs. Though in our experiments we al-
ways use MLPs to encode the posterior and de-
code the output, if required other architectures
like CNNs and RNNs can be easily used to re-
place the MLPs. As mentioned before, dnPAM
can work with non-Dirichlet priors by using the
Laplace approximation trick. It can also handle
full-covariance Gaussian as well as logistic Nor-
mals by simply using the Cholesky decomposition
and can therefore be used to learn Correlated Topic
Model (CTM) (Blei and Lafferty, 2006).

At first, the use of an inference network seems
strange, as coupling the variational parameters
across documents guarantees that the variational
bound will not be as tight. But the advantage of an
inference network is that after the weights of the
inference network have been learned on training
documents, we can obtain an approximate poste-
rior distribution for a new test document simply by
evaluating the inference network, without needing
to carry out any variational optimization. This is
the reason for the term amortized inference, i.e.,
the computational cost of training the inference
network is amortized across future test documents.

Figure 2: 9-randomly sampled ”topics” from Omniglot
dataset folded back to the original image dimensions.
An example of how the topics look like if component
collapsing occurs.

4.1 Learning Issues in VAE
Trained with stochastic variational inference, like
VAEs, our PAM models suffer from primarily two
learning problems; slow convergence and compo-
nent collapse.

Slow Learning
Training PAM models even on the recommended
learning rate of 0.001 for the ADAM optimizer
(Kingma and Ba, 2014), generally causes the gra-
dients to diverge early on in training. Therefore in
practice, fairly low learning rates have been used
in VAE-based generative models of text, which
significantly delays the learning in such model. In
this section we first explain one of the reasons for
the diverging behavior of the gradients and then
propose a solution that stabilizes them and there-
fore allows training VAEs on high learning rates,
hence speeds-up the learning.

Consider a VAE for a model p(x, z) where
z is a latent Gaussian variable, x is a cat-
egorical variable distributed as pΘd

(x|z) =
Multinomial(fd(z,Θd)), and the function fd() is a
decoder MLP with parameters Θd whose outputs
lie in the unit simplex. Suppose we define a vari-
ational distribution qΘe(z|x) = N (µ, exp(u)),
where µ = fµ(x,Θµ), u = fu(x,Θu) are MLPs
with parameters Θe = {Θµ,Θu} and u is the log-
arithm of the diagonal of the covariance matrix.

Now the VAE objective function is

ELBO(ΘΘΘ) = −KL[qΘe(z|x)||p(z)]
+ E[log pΘd

(x|z)]. (3)

Notice that the first term, the KL divergence, in-
teracts only with the encoder parameters. The gra-

2Tensorflow requires that the rank of the matrices in
tf.matmul be the same.



dients of this term L = KL[qΘe(z|x)||p(z)] with
respect to u is

∇uL =
1

2
(exp(u)− 1). (4)

One explanation for the diverging behavior of
the gradients lies in the exponential curvature of
this gradient. L is sensitive to small changes in u,
which makes it difficult to optimize it with respect
to Θe on high learning rates.

The instability of the gradient w.r.t. to u
demands an adaptive learning rate for encoder
parameters Θu that can adapt to sudden large
changes in∇uL.

We now propose that this adaptive learning rate
can be achieved by applying BachNorm (BN)
(Ioffe and Szegedy, 2015) transformation to fu.
BN transformation for an incoming mini-batch
{umi=1} is given by

uBN = γ
u− µbatch√
σ2

batch+ε

+ b. (5)

Here, µbatch = 1
m

∑m
i=1 ui, σ

2
batch = 1

m

∑m
i=1(ui−

µbatch)2 , γ is the gain parameter and finally b is
the shift parameter. We are specifically interested
in the scaling factor γ√

σ2
batch

, because the sample

variance grows and shrinks with large changes in
the norm of the mini-batch therefore allowing the
scaling factor to approximately dictates the norm
of the activations. Let L be defined as before, the
posterior q is now a function of uBN . The gradi-
ents w.r.t. u and the gain parameter γ are

∇uL =
γ√

σ2
batch+ε

Pu∇uBNL (6)

∇γL =
(u− µbatch)√
σ2

batch+ε

.∇uBNL, (7)

where Pu is a projection matrix. If∇uBNL is large
with respect to the out-going uBN , the scaling
term brings it down. Therefore, the scaling term
works like an adaptive learning rate that grows and
shrinks in response to the change in norm of the
batch of u’s due to large gradient updates to the
weights, thus resolving the issue with the diverg-
ing gradients. As shown in figure 3, after apply-
ing BN to u (red), the KL term minimizes fairly
slowly compared to the case (blue) when no BN is
applied to fu. This was also observed by (Srivas-
tava and Sutton, 2017). We experimentally found

Figure 3: In optimization without any BatchNorm, the
average KL gets minimized fairly early in the training.
With BatchNorm applied to the encoder unit that pro-
duces log σ2, the KL minimization is slow and slower
if BatchNorm is also applied to each of the topics in the
decoder.

that at this point the topics start to improve when
the learning rate is ≥ 0.001.

In order to establish that the improvement in
training comes from the adaptive learning rate
property of the gain parameter we replace the di-
visor in the BN transformation with the `2 norm
of the activation. We neither center the activations
nor apply any shift to them. This normalization
performs equivalently and occasionally better than
BN, therefore confirming our hypothesis. It also
removes any dependency on batch-level statistics
that might be a requirement in models that make
i.i.d assumptions.

Component Collapsing
Another well known issue in VAEs such as
dnPAM is the problem of component collapsing
(Dinh and Dumoulin, 2016; van den Oord et al.,
2017). In the context of topic models, compo-
nent collapsing is a bad local minimum of VAEs
in which the model only learns a small number
of topics out of K (Srivastava and Sutton, 2017).
For example, suppose we train a 3-PAM model on
the Omniglot dataset (Lake et al., 2015) using the
stochastic variational inference from Kingma and
Welling (2013). Figure 2 shows nine randomly
sampled topics for from this model which have
been reshaped to Omniglot image dimensions. All
the topics look exactly the same, with a few excep-
tions. This is clearly not a useful set of topics.

When trained without applying BN to the u,
the KL terms across most of the latent dimensions
(components of z) vanish to zero. We call them
collapsed dimensions, since the posterior along



them has collapsed to the prior. As a result, the
decoder only receives the sampling noise along
such collapsed dimensions and in order to mini-
mize the noise in the output, it makes the weights
corresponding to these collapsed components very
small. In practice this means that these weight
do not participate in learning and therefore do not
represent any meaningful topic.

Following Srivastava and Sutton (2017), we
also found that the topic coherence increases dras-
tically when BN is also applied to the topic ma-
trix prior to the application of the softmax non-
linearity along with fu. Besides preventing the
softmax units to saturate, this slows down the KL
minimization further as shown by the green curve
in figure 3.

5 Experiments and Results

We evaluate how dnPAM inference performs for
different architectures of PAM models when com-
pared to the state-of-art collapsed Gibbs infer-
ence. To this end we evaluate three different PAM
architectures, 4-PAM, 5-PAM and MoLDA, on
two different datasets, 20 Newsgroups and NIPS
abstracts (Lichman, 2013). We use these two
data sets because they represent two extreme set-
tings. 20 Newsgroup is a large dataset (12,000
documents) but with a more restricted vocabulary
(2000 words) whereas the NIPS dataset is smaller
in size (1500 abstracts) dataset but has a consid-
erably larger vocabulary (12419 words). We com-
pare inference methods both on time required for
training as well as topic quality. As a measure
of topic quality, we use the topic coherence met-
ric (normalized point-wise mutual information),
which as shown in Lau et al. (2014) corresponds
very well with human judgment on the quality of
topics. We do not report perplexity of the mod-
els because it has been repeatedly shown to not
be a good measure of topic coherence and even to
be negatively correlated with the topic quality in
some cases (Lau et al., 2014; Chang et al., 2009;
Srivastava and Sutton, 2017).

We start by comparing the topic coherence
across the different topic models on the 20 News-
group dataset. We train an LDA model using both
collapsed Gibbs sampling3 (Griffiths and Steyvers,
2004) and Decoupled Mean-Field Variational In-
ference (DMFVI)4 (Blei et al., 2003). Using

3We used the Mallet implementation (McCallum, 2002).
4We used the scikit-learn implementation (Pe-

Mallet, we train a 4-PAM model using 10000 it-
erations of collapsed Gibbs sampling and using
dnPAM we train a 4-PAM, a 5-PAM, a MoLDA
and a correlated topic model (CTM). In this exper-
iment we use 50 sub-topics for all models5. For 4-
PAM and 5-PAM, we use two super-topics follow-
ing (Li and McCallum, 2006), and two additional
super-duper-topics for 5-PAM. As shown in Table
1 all PAM models perform better than LDA-type
models, showing that more complex PAM archi-
tectures do improve the quality of the topics. Ad-
ditionally 4-PAM and 5-PAM models trained on
dnPAM beat all the LDA models for topic quality.
MoLDA and CTM trained using dnPAM also per-
form competitively with the LDA models but the
CTM model falls significantly behind PAM mod-
els on topic coherence.

Next, to study the effect of increasing the num-
ber of super and sub-topics in PAM models on
the topic quality we increase the number of super-
duper-topics to 10, super-topics to 50 and sub-
topics to 100 and re-run the previous experiment
but only on the 4-PAM or deeper models. Table 2
shows the topic coherence for each of these mod-
els and also the training time. Not only our infer-
ence method produces better topics it also is an or-
der of magnitude faster than the state-of-art Gibbs
sampling based inference for 4-PAM. Note that we
run the sampler for a total of 3000 iterations with
the burn-in parameter set to 2000 iterations.

For the smaller NIPS dataset, we repeat the
same experiments only for the PAM models again
under the same exact settings as described above.
Reported in table 3 are the topic coherence for
smaller PAM models with 50 sub-topics. Again,
we allowed 10,000 Gibbs iterations which took
more than a day to finish but did not beat dnPAM-
trained models on topic quality. For the bigger
PAM models we replicated the experiments from
the original paper. As reported in table 4 we
found that while the collapsed Gibbs based 4-PAM
model produced the best topics it did so in 15
hours. On the other hand, dnPAM-trained mod-
els produced topics with comparable quality and
only took a fraction of the inference time for Gibbs
by being able to leverage the GPU architecture for
computing dot-products very efficiently. We are
not aware of GPU-based implementations of other
inference method for PAMs.

dregosa et al., 2011).
5For MoLDA we use 10 and 50 topics



Table 1: Topic Coherence on 20Newsgroup for 50 topics. PAM models use two super-topics at each level. For
MoLDA, we report separate the coherence for each component in the admixture.

dnPAM
LDA

GIBBS
LDA

DMFVI
4-PAM
GIBBS 4-PAM 5-PAM CTM MoLDA

10 50
Topic Coherence 0.17 0.11 0.20 0.24 0.24 0.14 0.29 0.21

Table 2: Topic coherence for models trained on 20Newsgroup dataset for for 100 topics with 50 super-topics.
dnPAM

4-PAM
GIBBS 4-PAM 5-PAM MoLDA

50 100
Topic Coherence 0.19 0.22 0.21 0.24 0.21

Training Time (Min.) 594 11 16 16

Table 3: Topic coherence for models trained on NIPS dataset for 50 topics with 2 super-topics.
dnPAM

4-PAM
GIBBS 4-PAM 5-PAM MoLDA

10 50
Topic Coherence 0.033 0.042 0.039 0.036 0.024

Table 4: Topic coherence for models trained on NIPS dataset for 100 topics with 50 super-topics.
dnPAM

4-PAM
GIBBS 4-PAM 5-PAM MoLDA

50 100
Topic Coherence 0.047 0.041 0.045 0.025 0.024

Training Time (Min.) 892 19 26 11

5.1 Hyper-Parameter Tuning
For the experiments in this section we did not con-
duct an extensive hyper-parameter tuning. We did
a grid search for setting the encoder capacity while
moving between the two datasets. As a general
guideline for PAM models, the encoder capacity
should grow with the vocabulary size. For the
learning rate, we used the default setting of 1e−3

for the Adam optimizer for all the models. We
used a batch-size of 200 for 20 Newsgroup dataset
as used in (Srivastava and Sutton, 2017) and 50 for
the NIPS dataset. Though we found that the topic
coherence, especially for the smaller NIPS dataset
is sensitive to the batch-size setting and initializa-
tion. For certain settings we were able to achieve
higher topic coherence than the average topic co-
herence reported in this section.

6 Related Work

Topic models have been explored extensively via
directed (Blei et al., 2003; Li and McCallum,
2006; Blei and Lafferty, 2006; Blei et al., 2004)

as well as undirected models or restricted Boltz-
mann machines (Larochelle and Lauly, 2012; Hin-
ton and Salakhutdinov, 2009). Hierarchical exten-
sions to these models have received special atten-
tion since they allow capturing the correlations be-
tween the topics and provide meaningful interpre-
tation to the latent structures in the data.

Recent advancements in blackbox-type infer-
ence method (Kucukelbir et al., 2016; Ranganath
et al., 2014; Mnih and Gregor, 2014) have made
it easier to try newer models without the need of
deriving model-specific inference algorithms.

7 Conclusion

In this work we introduced dnPAM, which gener-
alizes the idea of amortized variational inference
that VAEs provide to a large class of deep topic
models.
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