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Abstract

The family of f -divergences is ubiquitously applied to generative modeling in
order to adapt the distribution of the model to that of the data. Well-definedness
of f -divergences, however, requires the distributions of the data and model to
overlap completely in every time step of training. As a result, as soon as the support
of distributions of data and model contain non-overlapping portions, gradient-
based training of the corresponding model becomes hopeless. Recent advances
in generative modeling are full of remedies for handling this support mismatch
problem: key ideas include either modifying the objective function to integral
probability measures (IPMs) that are well-behaved even on disjoint probabilities,
or optimizing a well-behaved variational lower bound instead of the true objective.
We, on the other hand, establish that a complete change of the objective function is
unnecessary, and instead an augmentation of the base measure of the problematic
divergence can resolve the issue. Based on this observation, we propose a generative
model which leverages the class of Scaled Bregman Divergences and generalizes
both f -divergences and Bregman divergences. We analyze this class of divergences
and show that with the appropriate choice of base measure it can resolve the support
mismatch problem and incorporate geometric information. Finally, we study the
performance of the proposed method and demonstrate promising results on MNIST,
CelebA and CIFAR-10 datasets.

1 Introduction

Modern deep generative modeling paradigms offer a powerful approach for learning data distributions.
Pioneering models in this family such as generative adversarial networks (GANs) (Goodfellow et al.,
2014) and variational autoencoders (VAEs) (Kingma & Welling, 2014) propose elegant solutions to
generate high quality photo-realistic images, which were later evolved to generate other modalities
of data. Much of the success of attaining photo-realism in generated images is attributed to the
adversarial nature of training in GANs. Essentially, GANs are neural samplers in which a deep
neural network Gφ is trained to generate high dimensional samples from some low dimensional noise
input. During the training, the generator is pitched against a classifier: the classifier is trained to
distinguish the generated from the true data samples and the generator is simultaneously trained to
generate samples that look like true data. Upon successful training, the classifier fails to distinguish
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between the generated and actual samples. Unlike VAE, GAN is an implicit generative model since
its likelihood function is implicitly defined and is in general intractable. Therefore training and
inference are carried out using likelihood-free techniques such as the one described above.

In its original formulation, GANs can be shown to approximately minimize an f -divergence measure
between the true data distribution px and the distribution qφ induced by its generator Gφ. The
difficulty in training the generator using the f -divergence criterion is that the supports of data and
model distributions need to perfectly match. If at any time in the training phase, the supports have
non-overlapping portions, the divergence either maxes out or becomes undefined. If the divergence
or its gradient cannot be evaluated, it cannot, in turn, direct the weights of model towards matching
distributions (Arjovsky et al., 2017) and training fails.

In this work, we present a novel method, BreGMN, for implicit adversarial and non-adversarial
generative models that is based on scaled Bregman divergences (Stummer & Vajda, 2012) and does
not suffer from the aforementioned problem of support mismatch. Unlike f -divergences, scaled
Bregman divergences can be defined with respect to a base measure such that they stay well-defined
even when the data and the model distributions do not have matching support. Such an observation
leads to a key contribution of our work, which is to identify base measures that can play such a
useful role. We find that measures whose support include the supports of data and model are the
ones applicable. In particular, we leverage Gaussian distributions to augment distributions of data
and model into a base measure that guarantees the desired behavior. Finally we propose training
algorithms for both adversarial and non-adversarial versions of the proposed model.

The proposed method facilitates a steady decrease of the objective function and hence progress of
training. We empirically evaluate the advantage of the proposed model for generation of synthetic
and real image data. First, we study simulated data in a simple 2D setting with mismatched supports
and show the advantage of our method in terms of convergence. Further, we evaluate BreGMN when
used to train both adversarial and non-adversarial generative models. For this purpose, we provide
illustrative results on the MNIST, CIFAR10, and CelebA datasets, that show comparable performance
to the sample quality of the state-of-art methods. In particular, our quantitative results on generative
real datasets also demonstrate the effectiveness of the proposed method in terms of sample quality.

The remainder of this document is organized as follows. Section 2 outlines related work. We introduce
the scaled Bregman divergence in Section 3, demonstrate how it generalizes a wide variety of popular
discrepancy measures, and show that with the right choice of base measure it can eliminate the
support mismatch issue. Our application of the scaled Bregman divergence to generative modeling
networks is described in Section 4, with empirical results presented in Section 5. Section 6 concludes
the paper.

2 Related work

Since the genesis of adversarial generative modeling, there has been a flurry of work in this domain,
e.g. (Nowozin et al., 2016; Srivastava et al., 2017; Li et al., 2017; Arjovsky et al., 2017) covering
both practical and theoretical challenges in the field. Within this, a line of research addresses the
serious problem of support mismatch that makes training hopeless if not remedied. One proposed
way to alleviate this problem and stabilize training is to match the distributions of the data and
the model based on a different, well-behaved discrepancy measure that can be evaluated even if
the distributions are not equally supported. Examples of this approach include Wasserstein GANs
(Arjovsky et al., 2017) that replace the f -divergence with Wasserstein distance between distributions
and other integral probability metric (IPM) based methods such as MMD GANs (Li et al., 2017),
Fisher GAN (Mroueh & Sercu, 2017), etc. While IPM based methods are better behaved with respect
to the non-overlapping support issue, they have their own issues. For example, MMD-GAN requires
several additional penalties such as feasible set reduction in order to successfully train the generator.
Similarly, WGAN requires some ad-hoc method for ensuring the Lipschitz constraint on the critic via
gradient clipping, etc. Another approach to remedy the support mismatch issue comes from Nowozin
et al. (2016). They showed how GANs can be trained by optimizing a variational lowerbound to the
actual f -divergence the original GAN formulation proposed. They also showed how the original
GAN loss minimizes a Jenson-Shannon divergence and how it can be modified to train the generator
using a f -divergence of choice.
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In parallel, works such as (Amari & Cichocki, 2010) have studied the relation between the many
different divergences available in the literature. An important extension to Bregman divergences,
namely scaled Bregman divergences, was proposed in the works of Stummer & Vajda (2012);
Kißlinger & Stummer (2013) and generalizes both f -divergences and Bregman divergences. The
Bregman divergence in its various forms has long been used as the objective function for training
machine learning models. Supervised learning based on least squares (a Bregman divergence) is
perhaps the earliest example. Helmbold et al. (1995); Auer et al. (1996); Kivinen & Warmuth (1998)
study the use of Bregman divergences as the objective function for training single-layer neural
networks for univariate and multivariate regression, along with elegant methods for matching the
Bregman divergence with the network’s nonlinear transfer function via the so-called matching loss
construct. In unsupervised learning, Bregman divergences are unified as the objective for clustering
in Banerjee et al. (2005), while convex relaxations of Bregman clustering models are proposed in
Cheng et al. (2013). Generative modeling based on Bregman divergences is explored in Uehara
et al. (2016a,b), which relies on a duality relationship between Bregman and f divergences. These
works retain the f -divergence based f -GAN objective, but use a Bregman divergence as a distance
measure for estimating the needed density ratios in the f -divergence estimator. This contrasts with
our approach which uses the scaled Bregman divergence as the overall training objective itself.

3 Generative modeling via discrepancy measures

The choice of distance measure between the data and the model distribution is critical, as the success of
the training procedure largely depends on the ability of these distance measures to provide meaningful
gradients to the optimizer. Common choices for distances include the Jensen-Shannon divergence
(vanilla GAN) f -divergence (f -GAN) (Nowozin et al., 2016) and various integral probability metrics
(IPM, e.g. in Wasserstein-GAN, MMD-GAN) (Arjovsky et al., 2017; Li et al., 2017). In this section,
we consider a generalization of the Bregman divergence that also subsumes the Jensen-Shannon and
f -divergences as special cases, and can be shown to incorporate some geometric information in a
way analogous to IPMs.

3.1 Scaled Bregman divergence

The Bregman divergence (Bregman, 1967) forms a measure of distance between two vectors
p, q ∈ Rd using a convex function F : Rd → R as

BF (p, q) = F (p)− F (q)−∇F (q) · (p− q),

which includes a variety of distances, such as the squared Euclidean distance and the KL divergence
between finite-cardinality probability mass functions, as special cases.

More useful in our setting is the class of separable Bregman divergences of the form

Bf (P,Q) =

∫
X
f(p(x))− f(q(x))− f ′(q(x))(p(x)− q(x))dx (1)

where f : R+ → R is a convex function, f ′ is its right derivative and P and Q are measures on
X with densities p and q respectively. In this form the divergence is a discrepancy measure for
distributions as desired. In general, as the name divergence implies, the quantity is non-symmetric. It
does not satisfy the triangle inequality either (Acharyya et al., 2013).

While this is a valid discrepancy measure, the Bregman divergence does not yield meaningful
gradients for training when the two distributions in question have non-overlapping portions in their
support, similar to the case of f -divergences (Arjovsky & Bottou, 2017). We thus propose to use the
scaled Bregman divergence, which introduces a third measure M with density m that can depend on
P and Q and uses it as a base measure for the Bregman divergence. Specifically, the scaled Bregman
divergence (Stummer & Vajda, 2012) is given by

Bf (P,Q|M) =

∫
X
f

(
p(x)

m(x)

)
− f

(
q(x)

m(x)

)
− f ′

(
q(x)

m(x)

)(
p(x)

m(x)
− q(x)

m(x)

)
dM. (2)

This expression is equal to the separable Bregman divergence (1) when M is equal to the Lebesgue
measure.
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As shown in (Stummer & Vajda, 2012), the scaled Bregman divergence (2) contains many pop-
ular discrepancy measures as special cases. In particular, when f(t) = t log t it reduces to the
KL divergence for any choice of M (as does the vanilla Bregman divergence).

Many classical criteria (including the KL and Jensen-Shannon divergences) belong to the family of
f -divergences, defined as

Df (P,Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx.

where the function f : R+ → R is a convex, lower-semi-continuous function satisfying f(1) = 0,
where the densities p and q are absolutely continuous with respect to each other. The scaled Bregman
divergence with choice of M = Q reduces to the f divergence family as:

Bf (P,Q|Q) =

∫
X
f

(
p(x)

q(x)

)
− f ′ (1)

(
p(x)

q(x)
− 1

)
dQ =

∫
X
q(x)f

(
p(x)

q(x)

)
dx,

which shows all f -divergences are special cases of the scaled Bregman divergence. A more complete
list of discrepancy measures included in the class of scaled Bregman divergences is found in Stummer
& Vajda (2012).

3.2 Noisy base measures and support mismatch

A widely-known weakness of f -divergence measures is that when the supports of p and q are disjoint,
the value of the divergence is trivial or undefined. In the context of generative models, this issue
is often tackled by adding noise to the model distribution which extends its support over the entire
observed space such as in VAEs. However, adding noise to the observed space is not particularly
well-suited for tasks such as image generation as it results in blurry images. In this work we propose
choosing a base measure M that in some sense incorporates geometric information in such a way
that the gradients in the disjoint setting become informative without compromising the image quality.

For the scaled Bregman Bf (P,Q|M), we propose choosing a “noisy" base measure M , specifically
one that is formed by convolving some other measure with the Gaussian measure N (0,Σ). Recall
that convolution of two distributions corresponds to the addition of the associated random variables,
hence in this case we are in affect adding Gaussian noise to the variable generated by M . In addition
to adding noise, we require a base measure M̃ that depends on P and Q to avoid the vanilla Bregman
divergence’s lack of informative gradients (see Section 4.1 below). By analogy to the Jensen-Shannon
divergence, we choose

M̃ = α(P ∗ N (0,Σ1)) + (1− α)(Q ∗ N (0,Σ2)) (3)

for 0 ≤ α ≤ 1 and some covariances Σ1 and Σ2, where ∗ denotes the convolution of two distributions.
Denote the density of M̃ as m̃.

Importantly, observe that each term of the corresponding scaled Bregman Bf (P,Q|M̃) is always
well defined and finite (with the exception of certain choices of f such as− log that require numerical
stabilization similar to the case of f -divergence) since M̃ has full support. Furthermore, since M̃ is a
noisy copy of αP + (1− α)Q, the ratio p

m̃ will be affected by q even outside the support of q, and
vice versa. This ensures that a training signal remains in the support mismatch case.

The presence of this training signal seems to indicate that geometric information is being used, since
it varies with the distance between the supports. To further explore this intuitive connection between
noisy base measures and geometric information, we attempt to relateBf (P,Q|M̃) to theWp distance.
In what follows, for simplicity we focus on the case of f(t) = t log t; analysis for more general
choices of f is left for future work. For the KL divergence for example, Pinsker’s inequality states
that

DKL(p||q) ≥ 2(W1(p, q))2.

A similar lower bound for the W2 distance and certain log-concave q follows from Talagrand’s
inequality (Bobkov & Ledoux, 2000). These lower bounds are not surprising, since the KL divergence
can go to infinity when Wasserstein-p is finite. However, lower bounds of this type are not sufficient
to imply that a divergence is using geometric information, since it can increase very quickly while
Wp increases only slightly.

4



Our use of a noisy M0, however, allows us to obtain an upper bound for a symmetrized ver-
sion of Bf (P,Q|M̃), which implies a continuity with respect to geometric information. While
we found in our generative modeling experiments that a symmetrized version is unnecessary
to use in practice, it is useful for comparison to IPMs. Recall that the Jensen-Shannon diver-
gence constructs a symmetric measure by symmetrizing the KL divergence around (P + Q)/2.
Any Bregman divergence can be similarly symmetrized (Eq. 16 in Nielsen & Nock (2011)).
For simplicity, we consider the special case of M̃ , namely M0 = P+Q

2 ∗ Nσ with density m0,
and use it to both scale and symmetrize the scaled Bregman divergence, obtaining the measure
Bf (P,M0|M0) +Bf (Q,M0|M0) = Df (P ||M0) +Df (Q||M0). In Section A of the Supplement
we prove:
Proposition 1. Assume that EU∼P ‖U‖ and EV∼P ‖V ‖ are bounded. Then

|Bt log t(P,M0|M0)−Bt log t(Q,M0|M0)| ≤ cW2(P,Q) + |h(Q)− h(P )|,

where c is a constant given in the proof and h(P ) is the Shannon entropy of P .

While an h(P )− h(Q) term remains, it is simple to rescale Q to match the entropy of P , eliminating
that term and leaving the Wasserstein distance.1

While not fully characterizing the geometric information in Bf (P,Q|M0), these observations seem
to imply that the use of the noisy M̃ is capable of incorporating some geometric information without
having to resort to IPMs with their associated training difficulties in the GAN context such as gradient
clipping and feasible set reduction (Arjovsky & Bottou, 2017; Li et al., 2017).

4 Model

Let {xi|xi ∈ Rd}Ni=1 be a set of N samples drawn from the data generating distribution px that we
are interested in learning through a parametric model Gφ. The goal of generative modeling is to
train Gφ, generally implemented as a deep neural network, to map samples from a k-dimensional
easy-to-sample distribution to the ambient d dimensional data space, i.e. Gφ : Rk 7→ Rd. Letting qφ
be the distribution induced by the generator function Gφ, almost all training criteria are of the form

min
φ
D(px‖qφ) (4)

where D(.‖.) is a measure of discrepancy between the data and the model distributions. We propose
to use the scaled-Bregman divergence as D in Equation (4). We will show that unlike f -divergences,
scaled-Bregman divergences can be easily estimated with respect to a base measure using only
samples from the distributions. This is important when we aim to match distributions in very high
dimensional spaces where they may not have any overlapping support (Arjovsky et al., 2017).

In order to compute the divergence between data and model distributions, it is not required that both
densities are known or can be evaluated on realizations from distributions. Instead, being able to
evaluate the ratio between them, i.e. density ratio estimation, is typically all that is needed. For
example, generative models based on f -divergences only need density ratio estimation. Importantly,
similar to the case of f -divergences, scaled-Bregman divergence estimation requires estimates of the
density ratios only.

Below, we describe two methods of density ratio estimation (DRE) between two distributions. In
what follows, suppose r = px

qφ
is the density ratio.

Discriminator-based DRE: This family of models uses a discriminator to estimate the density
ratio. Let y = 1 if x ∼ px and y = 0 if x ∼ qφ. Further, let σ(C(x)) = p(y = 1|x), namely
the discriminator, be a trained binary classifier on samples from px and qφ where σ is the Sigmoid
function. It is then easy to show that C(x) = − log px(x)

qφ(x) = − log r(x) (Sugiyama et al., 2012), so
C is a function of density ratio r(x). In fact, this is the underlying principle in adversarial generative
models (Goodfellow et al., 2014). As such, most discriminator-based DREs result in adversarial
training procedures when used in generative models.

1Under certain smoothness conditions on P and Q |h(P ) − h(Q)| can itself be upper bounded by the
Wasserstein distance (see Polyanskiy & Wu (2016) for details).
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Algorithm 1: Training Algorithm of BreGMN
1 while not converged do
2 Step 1 Estimate the density ratios rp/m and rqφ/m, using either the adversarial

discriminator-based (GAN-like) or
3 non-adversarial two-sample-test-based (MMD-like) method.
4 Step 2 Train the generator by optimizing
5 minφ B̂f (px, qφ|M̃).
6 end

MMD-based DRE: This family of models estimate the density ratio without the use of a discrimi-
nator. In order to estimate the density ratio r without training a classifier, thereby avoiding adversarial
training of the generator later, we can employ the maximum mean discrepancy (MMD) (Gretton
et al., 2012) criterion as in Sugiyama et al. (2012). By solving for r in the RKHS in

min
r∈H

∥∥∥∥∫ k(x; .)px(x)dx−
∫
k(x; .)r(x)qφ(x)dx

∥∥∥∥2

H
, (5)

where k is a kernel function, we obtain a closed form estimator of the density ratio as

r̂p/q = K−1
q,qKq,p111. (6)

Here Kq,q and Kq,p denote the Gram matrices corresponding to kernel k.

4.1 Empirical estimation

Using the DRE estimators introduced above we create empirical estimators of the scaled-Bregman
divergence (2) as

B̂f (px, qφ|M) =
1

N

N∑
i=1

f
(
rp/m(xi)

)
− f

(
rqφ/m(xi)

)
(7)

−f ′
(
rqφ/m(xi)

) (
rp/m(xi)− rqφ/m(xi)

)
where rp/m denotes a DRE of p/m and the xi are i.i.d. samples from the base distribution m with
measure M . Note that this empirical estimator B̂f does not have gradients with respect to φ if we
only evaluate the DRE estimators on samples from the base measure m. Choices of M that depend
on p and q, however, including our choice of M̃ (3) as well as the choice M = Q (f -divergences),
have informative gradients, allowing us to train the generator.

4.2 Training

Training the generator function Gφ using scaled-Bregman divergence (shown in Algorithm 1) alter-
nates the following two steps until convergence.

Step 1: Estimate the density ratios rp/m and rqφ/m using either the adversarial discriminator-based
method (as in a GAN) or the non-adversarial MMD-based method.

Step 2: Train the generator by optimizing

min
φ
B̂f (px, qφ|M̃). (8)

5 Experiments

In this section we present a detailed evaluation of our proposed scaled-Bregman divergence based
method for training generative models. Since most generative models aim to learn the data generating
distribution, our method can be generically applied to a large number of simple or complex and deep
generative models for training. We demonstrate this by training a range of simple to complex models
with our method.
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Figure 1: f -divergence and scaled-Bregman divergence based training on synthetic dataset of two
disjoint, non-overlapping 2D distributions.

(a) Measure vs Training

(b) 2D distributions.

5.1 Synthetic data: support mismatch

In this experiment, we evaluate our method in the regime where p and qφ have mismatched support,
in order to validate the intuition that the noisy base measure M̃ aids learning in this setting. As shown
in Figure 1(b), we start by training a simple probabilistic model (blue) to match the data distribution
(red). The data distribution is a simple uniform distribution with finite support. Our model is a
therefore parameterized as a uniform distribution with one trainable parameter.

Figure 1(a) shows the effect of training this model with f -divergence and with our method. Clearly,
neither the KL nor JS divergences are able to provide any meaningful gradients for the training of this
simple model. Our scaled-Bregman based training method, however, is indeed able to learn the model.
Interestingly, as Figure 1 shows, the choice of the function f matters in the empirical convergence
rate of our method, with the convergence of f(t) = − log t much faster than that of f(t) = t2.

5.2 Non-adversarial generative model

Our training procedure is not intrinsically adversarial, i.e. it is not a saddle-point problem when
the MMD-based DRE is used. To demonstrate the capability of the proposed model in training
non-adversarial models, in this section, we apply the MMD-based DRE to train a generative model
on the MNIST dataset in a non-adversarial fashion. As shown in Figure 3(a), our method can be
used to successfully train generative models of a simple dataset without using adversarial techniques.
While the sample quality is not optimal (better sample quality may be achievable by carefully tuning
the kernel in the MMD criterion), the training procedure is remarkably stable as shown in Figure 3(b).

5.3 Adversarial generative model

Training generative models on complicated high-dimensional datasets such as those of natural images
is done preferably with adversarial techniques since they tend to lead to better sample quality. One
straightforward way to assign adversarial advantage to our method is to use a discriminator based DRE.
To evaluate our training method on adversarial generation, in this section, we compare the Frechet
Inception Distance (FID) (Heusel et al., 2017) of MMD-GAN (Li et al., 2017), GAN (Goodfellow
et al., 2014) against BreGMN on CIFAR10 and CelebA dataset. FID measures the distance between
the data and the model distributions by embedding their samples into a certain higher layer of a
pre-trained Inception Net. We used a 4-layer DCGAN (Radford et al., 2015) architecture for all the
experiments and averaged the FID over multiple runs. N (0, 0.001) is used as the noise level across
all the experiments. MMD-GAN trains a generator network using the maximum mean discrepency
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Figure 2: Non-adversarial Training using scaled-Bregman Divergence and MMD based DRE.

(a) Samples from the generator.

(b) Generator loss steadily decreases.

Figure 3: Random samples from Adversarial BreGMN models (after 5 Epochs)

(a) CIFAR10 (b) CELEB A

Table 1: Sample quality (measured by FID; lower is better) of BreGMN compared to GANs.
Archtitecture Dataset MMD-GAN GAN BreGMN
DCGAN Cifar10 40 26.82 26.62
DCGAN CelebA 41.10 30.97 30.84

(Gretton et al., 2012) where the kernel is trained in an adversarial fashion. As shown in Table 1, both
BreGMN and GANs performs better than MMD-GAN in terms of sample quality. While BreGMN
performs slightly better than GAN on average, their sample qualities are comparable.
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6 Conclusions

In this work, we proposed scaled-Bregman divergence based generative models and identified base
measures for them to facilitate effective training. We showed that the proposed approach provides
a certifiably advantageous criterion to model the data distribution using deep generative networks
in comparison to the f -divergence based training methods. We clearly established that unlike
f -divergence based training our method does not fail to train even when the model and the data
distributions do not have any overlapping support to start with. A future direction of research addresses
the choice of the base measure and the effect of noise level on the optimization. Another, more
theoretical direction is to study and establish the relationship between scaled-Bregman divergence
and other IPMs.
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Supplementary material for: BreGMN:
scaled-Bregman Generative Modeling Networks
A Proof of Proposition 1

Observe that

Bt log t(P,M0|M0)−Bt log t(Q,M0|M0) = DKL(P ||M0)−DKL(Q||M0)

=

∫
X

log

(
p(x)

m0(x)

)
dP −

∫
X

log

(
q(x)

m0(x)

)
dQ

=

∫
X

log (m0(x)) dQ−
∫
X

log (m0(x)) dP + h(Q)− h(P )

= EV∼Q log (m0(V ))− EU∼P log (m0(U)) + h(Q)− h(P )

where we denote the Shannon entropy as h(P ) = −
∫
X log(p(x))dP . Note that

| log (m0(V ))− log (m0(V )) | =
∣∣∣∣∫ 1

0

〈∇ logm0(tv + (1− t)u), u− v〉dt
∣∣∣∣

≤
∫ 1

0

(
3

σ2
(t‖v‖+ (1− t)‖u‖) +

4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)
‖u− v‖dt

=

(
3

2σ2
(‖v‖+ ‖u‖) +

4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)
‖u− v‖ (9)

where we have used Cauchy-Schwartz inequality and have noted that

‖∇ logm0(x)‖ ≤ 3

σ2
‖x‖+

4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖) , ∀x ∈ Rd,

by Proposition 2 of Polyanskiy & Wu (2016).

Let Wp(·, ·) denote the Wasserstein-p distance

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

‖x− y‖pdπ(x, y)

) 1
p

,

where Π(µ, ν) denotes the set of couplings of µ and ν, i.e. the set of measures on X × X with
marginals µ and ν.

Now, taking the expectation of (9) with respect to the W2-optimal coupling π between P and Q, we
have

|Bt log t(P,M0|M0)−Bt log t(Q,M0|M0)|

≤ E(u,v)∼π

[(
3

2σ2
(‖v‖+ ‖u‖) +

4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)
‖u− v‖

]
+ |h(Q)− h(P )|

≤

√(
Eπ
(

3

2σ2
(‖v‖+ ‖u‖) +

4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

))
(Eπ‖u− v‖2) + |h(Q)− h(P )|

= cW2(P,Q) + |h(Q)− h(P )|,

where we have again used the Cauchy-Schwarz inequality and have set the constant c =
11

2σ2 (EU∼P ‖U‖+ EV∼Q‖V ‖).
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