
BreGMN: scaled-Bregman Generative Modeling Networks

Abstract

Recent advances in f -divergence based genera-
tive modeling are full of remedies for handling
support mismatch problem. Key ideas include
modifying the objective function to integral
probability measures (IPMs) that are well-
behaved even on disjoint probabilities and
optimizing a well-behaved variational lower
bound instead of the true objective. We, on
the other hand, establish that a complete
change of the objective function is unneces-
sary, and instead an augmentation of the base
measure of the problematic divergence can re-
solve the issue. Based on this observation, we
propose a generative model which leverages
the class of Scaled Bregman Divergences which
generalizes both f -divergences and Bregman
divergences. We analyze this class of diver-
gences and show that with the appropriate
choice of base measure it can resolve the sup-
port mismatch problem and incorporate ge-
ometric information. We study the behavior
of the proposed model in theory and in prac-
tice, and demonstrate promising results on
MNIST, CelebA and CIFAR-10 datasets.

1 Introduction

Modern deep generative modeling paradigms offer a
powerful approach to learn data distributions. Pioneer-
ing models in this family such as generative adversar-
ial networks (GANs) [1] and variational autoencoders
(VAEs) [2] propose elegant solutions to generate high
quality photo-realistic images, which were later evolved
to generate other modalities of data. In GANs, much
of the success of attaining photo-realism in generated
images is attributed to the adversarial nature of train-
ing. Essentially, GANs are neural samplers in which
a deep neural network Gφ is trained to generate high
dimensional samples from some low dimensional noise
input. During adversarial training, the generator is
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pitched against a classifier: the classifier is trained to
distinguish the generated from the true data samples,
while the generator is simultaneously trained to gener-
ate samples that appear to come from the true data
distribution. Upon successful training, the classifier
fails to distinguish between the generated and true
samples. Unlike the VAE, GAN is an implicit gener-
ative model since its likelihood function is implicitly
defined and is intractable to express explicitly in gen-
eral. Therefore training and inference are carried out
using likelihood-free techniques such as the adversarial
approach described above.

In their original formulation, GANs can be shown to
approximately minimize an f -divergence measure be-
tween the true data distribution P and the distribution
Qφ induced by its generator Gφ [3]. The difficulty in
training the generator using the f -divergence criterion
is that the supports of data and model distributions
need to perfectly match throughout training, since if
the supports have non-overlapping portions at any time
in the training phase, the divergence either maxes out
or becomes undefined. If the divergence or its gradi-
ent cannot be evaluated, it cannot, in turn, direct the
weights of model towards matching distributions [4]
and training fails.

In this work, we present a novel method, BreGMN, for
training both implicit adversarial and non-adversarial
generative models that is based on scaled Bregman
divergences (sBD) [5] and does not suffer from the
aforementioned problem of support mismatch. Unlike
f -divergences, scaled Bregman divergences can be de-
fined with respect to a base measure such that they
remain well-defined even when the data and generated
distributions do not have matching supports. This
well-definedness holds so long as the base measure has
support that includes the supports of both the data and
model distributions. In this work, we choose to lever-
age Gaussian distributions to augment distributions
of the data and model to form a base measure that
satisfies this constraint while also providing a training
signal containing important geometric information. De-
spite using a Gaussian-smoothed base measure, we will
show, in Section 3.2.1, that our method successfully
learns generative models whose generated distribution
matches the true data distribution, in contrast to noise
adding regularization methods [6, 7] that have similar
stability properties but converge to a noisy corruption
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of the data distribution. Using this proposed base
measure facilitates a stable decrease of the objective
function and hence a more stable training behavior.
Finally, we propose practical training algorithms for
both adversarial and non-adversarial training of the
proposed BreGMN model, and test it on simulated and
real data. We study simulated data in a 2D setting
with mismatched supports and show the advantage
of our method in terms of convergence compared to
f -divergences. We then evaluate BreGMN on real data
when used to train both adversarial and non-adversarial
generative models. We provide illustrative results on
the MNIST, CIFAR10, and CelebA datasets that show
comparable sample quality performance to the state-
of-art.

The remainder of this paper is organized as follows.
Section 2 outlines related work. We introduce the
scaled Bregman divergence in Section 3, demonstrate
how it generalizes a wide variety of popular discrepancy
measures, and show that with the right choice of base
measure it can eliminate the support mismatch issue.
Our application of the scaled Bregman divergence to
generative modeling networks is described in Section 4,
with empirical results presented in Section 5. Section 6
concludes the paper.

2 Related work

The genesis of adversarial generative modeling has ig-
nited a flurry of research covering both practical and
theoretical challenges in the field, e.g. [3, 8, 9, 4].
Within this body of work, a line of research addresses
the serious problem of support mismatch that makes
training hopeless if not remedied. One proposed way to
alleviate this problem and stabilize training is to match
the distributions of the data and the model based on a
different, well-behaved discrepancy measure (i.e. not
an f -divergence) that can be evaluated even if the dis-
tributions are not equally supported. Examples of this
approach include Wasserstein GANs [4] that replace
the f -divergence with Wasserstein distance between dis-
tributions, and other integral probability metric (IPM)
based methods such as MMD GANs [9], Fisher GAN
[10], etc. While IPM based methods are better behaved
under non-overlapping support, they have their own
issues. For example, MMD-GAN requires several
additional penalties such as feasible set reduction in
order to successfully train the generator [11]. Simi-
larly, WGAN requires ad-hoc methods for enforcing the
Lipschitz constraint on the critic, e.g. via gradient clip-
ping or penalization. The second class of approaches
to remedy the support mismatch issue comes from [3],
which showed how GANs can be trained by optimizing
a variational lower bound to the f -divergence. The
third class of methods to cope with instability and

support mismatch in generative models, and maybe
the most closely related to our method is the class of
noise inducing regularization methods [6, 7] that add
full-support noise to the real or generated data and
then run the model with this new full-support distri-
bution. Similar to us, such methods solve the support
mismatch problem by adding noise. There is a crucial
difference, however. In their case, they must fit the
model to a noisy version of data as opposed to a clean
version. To cope with this new issue, it is proposed to
decrease the noise over time with an annealing method.
We show in Section 3.2.1, how our proposed method
is superior to noise inducing regularization methods
in this regard, as our method directly fits to the true
distribution without any annealing.

In parallel, works such as [12] have studied the relation
between the many different divergences available in the
literature. An important extension to both Bregman
and f -divergences, namely scaled Bregman divergences,
is proposed in [5, 13]. The Bregman divergence in its
various forms has long been used as the objective func-
tion for training machine learning models. Supervised
learning based on least squares (a Bregman divergence)
is perhaps the earliest example. [14, 15, 16] study the
use of Bregman divergences as the objective function
for training single-layer neural networks for univariate
and multivariate regression. In unsupervised learning,
Bregman divergences have been used as the objective
for clustering, in [17], while Bregman divergences for
clustering models are relaxed to convex forms in [18].
[19, 20] have explored generative modeling based on
Bregman divergences, which relies on a duality relation-
ship between Bregman and f -divergences. These works
retain the f -divergence based f -GAN objective, but
use a Bregman divergence as a distance measure for es-
timating the needed density ratios in the f -divergence
estimator. This contrasts with our approach which uses
the scaled Bregman divergence as the overall training
objective itself.

3 Generative modeling via
discrepancy measures

The choice of distance measure between the data and
the model distribution is critical, as the success of the
training procedure largely depends on the ability of
these distance measures to provide meaningful gradi-
ents to the optimizer. Common choices for distances
include the Jensen-Shannon divergence (vanilla GAN)
[1], f -divergence (f -GAN) [3], and various integral
probability metrics (IPM, e.g. in Wasserstein-GAN,
MMD-GAN) [4, 9]. In this section, we consider a gener-
alization of the Bregman divergence that also subsumes
the Jensen-Shannon and f -divergences as special cases,



and can be shown to incorporate some geometric infor-
mation in a way analogous to IPMs.

3.1 Scaled Bregman divergence

The Bregman divergence [21] forms a measure of
distance between two vectors ~p, ~q ∈ Rd using a convex
function f : Rd → R as

Bf (~p, ~q) = f(~p)− f(~q)−∇f(~q) · (~p− ~q),

which subsumes a variety of distances, such as the
squared Euclidean distance and the KL divergence
between finite-cardinality probability mass functions,
as special cases. More useful in our setting is the class
of separable Bregman divergences of the form

Bf (P,Q) =

∫
X
f(p(x))− f(q(x))−

f ′(q(x))(p(x)− q(x)) dx (1)

where f : R+ → R is a convex function, f ′ is its right
derivative and P and Q are measures on X with den-
sities p and q respectively.In this form the divergence
is a discrepancy measure for distributions as desired.
The integration in (1) makes it possible to compute the
discrepancy between two distributions using samples
drawn from those distributions. In general, as the
name divergence implies, the quantity is non-symmetric.
It does not satisfy the triangle inequality either [22].

While this is a valid discrepancy measure, the Breg-
man divergence does not yield meaningful gradients for
training when the two distributions in question have
non-overlapping portions in their support, similar to
the case of f -divergences [6]. We thus propose to use
the scaled Bregman divergence, which introduces a
third measure M with density m that can depend on
P and Q and uses M as a base measure for the Breg-
man divergence. Specifically, the scaled Bregman
divergence [5] is given by

Bf (P,Q|M) =

∫
X
f

(
p(x)

m(x)

)
− f

(
q(x)

m(x)

)
− f ′

(
q(x)

m(x)

)(
p(x)

m(x)
− q(x)

m(x)

)
dM. (2)

Notably, this expression is equal to the separable Breg-
man divergence of (1) whenM is equal to the Lebesgue
measure.

As shown in [5], the scaled Bregman divergence of
(2) contains many popular discrepancy measures as
special cases. In particular, when f(t) = t log t it
reduces to the KL divergence for any choice of M
(as does the vanilla Bregman divergence). On the other
hand, many classical criteria (including the KL and

Jensen-Shannon divergences) also belong to the family
of f-divergences, defined as

Df (P,Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx.

where the function f : R+ → R is a convex, lower-
semi-continuous function satisfying f(1) = 0, where
the densities p and q are absolutely continuous with
respect to each other. The scaled Bregman divergence
with choice of M = Q reduces to the f -divergences
family as:

Bf (P,Q|Q) =

∫
X
f

(
p(x)

q(x)

)
− f ′ (1)

(
p(x)

q(x)
− 1

)
dQ

=

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (3)

which shows all f -divergences are special cases of the
scaled Bregman divergence. A more complete list of
discrepancy measures included in the class of scaled
Bregman divergences can be found in [5].

3.2 Scaled Bregman divergences with noisy
base measures

As noted above, a widely-known weakness of
f -divergence measures is that when the supports of
P and Q are disjoint, the value of the divergence is
trivial or undefined. To address this problem, for the
scaled Bregman Bf (P,Q|M), we are thus motivated to
choose a “noisy” base measure M , specifically one that
is formed by convolving some other measure with the
Gaussian measure N (0,Σ), which has full support. Re-
call that convolution of two distributions corresponds
to the addition of the associated random variables, i.e.
from random realizations drawn from the distributions,
hence in this case we are in affect adding Gaussian
noise to the variable generated by M .

In addition to adding noise, we require a base mea-
sure M̃ that depends on P and Q to avoid the vanilla
Bregman divergence’s lack of informative gradients (see
Section 4.2 below). By analogy to the Jensen-Shannon
divergence, in the scaled Bregman divergence,

Bf (P,Q|M̃) =

∫
X
f

(
p(x)

m̃(x)

)
− f

(
q(x)

m̃(x)

)
−

f ′
(
q(x)

m̃(x)

)(
p(x)

m̃(x)
− q(x)

m̃(x)

)
dM̃, (4)

we choose M̃ as,

M̃ = α
(
P ∗ N (0,Σ1)

)
+ (1− α)

(
Q ∗ N (0,Σ2)

)
(5)

for 0 ≤ α ≤ 1 and some covariances Σ1 and Σ2, where
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∗ denotes the convolution of two distributions.1 Denote
the density of M̃ as m̃.

This choice prevents the terms p(x)
m̃(x) and q(x)

m̃(x) from go-
ing to infinity at any x. Importantly, observe that each
term of the corresponding scaled Bregman Bf (P,Q|M̃)
is always well defined and finite so long as f(0) is
since M̃ has full support. This holds for any value
of 0 ≤ α ≤ 1. Furthermore, since M̃ is a noisy copy
of αP + (1 − α)Q, the ratio p

m̃ will be affected by Q
even outside the support of Q. Similarly, the ratio
q
m̃ will be affected by P even outside the support of
P . These ensure that training signals remain in the
support mismatch case.

Interestingly, the presence of this training signal seems
to indicate that geometric information is contained in it,
since it varies with the distance between the supports
of P and Q, which is explored in Section ??.

3.2.1 Distribution matching behavior

In this section, we analyze whether an optimizer based
on scaled Bregman divergence with noisy base measure
is consistent. To do this we identify a globally optimal
solution to the “infinite data” problem

Q∗ = arg min
Q

Bf (P,Q|M),

where P is the true data distribution of training data.
For this purpose, observe that P is in the feasible set
so Bf (P, P |M) upper bounds the optimal value, i.e.
Bf (P, P |M) ≥ Bf (Q∗, P |M). Now, notice that for the
convex function f , the scaled Bregman divergence is
always nonnegative, Bf (P,Q∗|M) ≥ 0. Finally, observe
that

Bf (P, P |M) =

∫
f

(
p(x)

m(x)

)
− f

(
p(x)

m(x)

)
−

f ′
(
p(x)

m(x)

)(
p(x)

m(x)
− p(x)

m(x)

)
dM = 0.

Hence the upper bound is tight and P is a global min-
imizer, i.e. Q∗ = P . Hence in BregMN, the optimal
distribution matches the clean data distribution, de-
spite the base measure being noisy.

This is not the case for the very seemingly similar class
of noise inducing regularization methods. Recall from
Section 2, that these methods add full support noise
to the data distribution to combat support mismatch
problem and then run the model with this new full-

1In practice we choose symmetric α = 0.5 and isotropic
Σ1 = Σ2 = σ2I where we tune σ. Tuning α and Σi further
based on data may yield small performance gains at the
cost of additional computation.

support distribution.2 In fact, they optimize for

Q∗ = arg min
Q

Df (PX+ε, Q),

in which the optimal solution is clearly Q∗ = PX+ε. In
other words, in the class of noise inducing methods, the
optimal distribution matches to the noise corrupted dis-
tribution yielding to a generator that must inherently
fail to correctly describe the original data distribu-
tion. As a result, these methods must introduce ad-hoc
patches such as annealing to address this issue, which
adds training complexity and yields a new suite of pa-
rameters that must be tuned. Our approach instead
successfully matches the correct distributions by itself.

4 Model

Let {xi|xi ∈ Rd}Ni=1 be a set of N samples drawn
from the data generating distribution P that we are
interested in learning through a parametric model Gφ.
The goal of generative modeling is to trainGφ, generally
implemented as a deep neural network, to map samples
from a k-dimensional easy-to-sample distribution to the
ambient d dimensional data space, i.e. Gφ : Rk 7→ Rd.
Letting Qφ be the distribution induced by the generator
function Gφ,

We propose to use the scaled-Bregman divergence (4)
with noisy base measure (5) of Section 3.2 as the mea-
sure of the discrepancy between true and generated
data distributions yielding

min
φ
Bf (P,Qφ|M̃φ) = min

φ

∫
X
f

(
p(x)

m̃φ(x)

)
−

f

(
qφ(x)

m̃φ(x)

)
− f ′

(
qφ(x)

m̃φ(x)

)(
p(x)

m̃φ(x)
− qφ(x)

m̃φ(x)

)
dM̃φ,

s.t. M̃φ = α
(
P ∗ N (0,Σ1)

)
+ (1− α)

(
Qφ ∗ N (0,Σ2)

)
(6)

where p and qφ are densities of true and generated
distributions P,Qφ respectively.

We will show in Section 4.1 that scaled-Bregman diver-
gences can be easily estimated with respect to a base
measure using only samples from the distributions. Un-
like for f -divergences, the procedure here works even
in the case of support mismatching distributions. This
is particularly important when we aim to match distri-
butions in very high dimensional spaces where there
may not be have any overlapping support [4].

4.1 Density ratio estimation (DRE)

In order to compute the divergence between data and
model distributions, it is not always required that the

2See for example Section 3 of [6].



densities are known or can be evaluated on the realiza-
tions from those distributions. Instead, being able to
evaluate the ratio between them, i.e. density ratio esti-
mation, is typically all that is needed. For example, it is
known that generative models based on f -divergences
only need density ratio estimation.

Now, observe that scaled-Bregman divergences can
be estimated via evaluating the ratio of the densities
without needing to evaluate the densities themselves,
since we can express the training objective of (6) as

min
φ

∫
f
(
rp/m̃(xi)

)
− f

(
rqφ/m̃(xi)

)
−

f ′
(
rqφ/m̃(xi)

) (
rp/m̃(xi)− rqφ/m̃(xi)

)
dM̃, (7)

where ra/b denotes the ratio of the density function
a to the density function b. Below, we describe two
methods of density ratio estimation (DRE) between
two distributions.

Discriminator-based DRE One possibility is to
deploy a discriminator to estimate the density ratio.
Let y = 1 if x ∼ P and y = 0 if x ∼ Qφ. Further, let
σ(C(x)) = p(y = 1|x) be a discriminator, i.e. binary
classifier, trained on samples from P and Qφ where σ
is the sigmoid function. It is then easy to show that
C(x) = − log p(x)

qφ(x) = − log r(x) [23], so C is repre-
sented as an invertible function of density ratio r(x),
from which r(x) can be uniquely computed and used
in (4). In fact, this method is the underlying princi-
ple in adversarial generative models. As such, most
discriminator-based DREs result in adversarial training
procedures when used in generative models.

MMD-based DRE The second method of estimat-
ing the density ratio does not use a discriminator, and
thereby avoids potentially costly adversarial training
of the generator. It instead uses methods based on ker-
nelized statistical two-sample tests such as maximum
mean discrepancy (MMD) of [24]. For this purpose, we
can employ the MMD criterion as in [23] by solving for
r in the RKHS in

r̂ = arg min
r∈H

∥∥∥∥ ∫ k(x; .)p(x)dx−
∫
k(x; .)r(x)qφ(x)dx

∥∥∥∥2

H
,

where k is a kernel function and K is the corresponding
Gram matrices of reproducing Hilbert space H. We
obtain a closed form estimator of the density ratio as

r̂p/q = K−1
q,qKq,p111. (8)

4.2 Empirical estimation

Using the DRE estimators introduced above we create
empirical estimators of the scaled-Bregman divergence

of (7) from finite training samples as

min
φ
B̂f (P,Qφ|M̃φ) = min

φ

1

N

N∑
i=1

f
(
rp/m̃φ(xi)

)
−

f
(
rqφ/m̃φ(xi)

)
−f ′

(
rqφ/m̃φ(xi)

) (
rp/m̃φ(xi)− rqφ/m̃φ(xi)

)
where the xi are i.i.d. samples from the base distribu-
tion m̃ with measure M̃ .

Note that this empirical estimator B̂f does not have
informative gradients with respect to φ if we only eval-
uate the DRE estimators on samples from an arbitrary
base measure M which is not dependent on the genera-
tor parameters. However, choices of M that depend on
Q, including our choice of M̃ in (5) as well as the choice
M = Q (f -divergences), have informative gradients,
allowing us to train the generator.

4.3 Training

Training the generator function Gφ using scaled-
Bregman divergence is shown in Algorithm 1.

Algorithm 1: Training Algorithm of BreGMN
1 while not converged do
2 Step 1 Estimate the density ratios rp/m̃ and

rqφ/m̃ using either (a) the adversarial
discriminator-based (GAN-like) method or (b)
the non-adversarial two-sample-test-based
(MMD-like) method.

3 Step 2 Train the generator by optimizing
4

min
φ
B̂f (P,Qφ|M̃(P,Qφ)) subject to

M̃(P,Qφ) = 0.5P ∗N (0,Σ1) + 0.5Qφ ∗N (0,Σ2).

5 end

5 Experiments

In this section, we present a detailed empirical eval-
uation of our proposed method. We first present a
battery of controlled experiments on synthetic datasets
to compare and contrast sBD with f -divergence mea-
sures and study its empirical convergence properties.
Next, we show how sBD can be employed to train
neural network based deep generative models of im-
age data in both, non-adversarial and adversarial set-
tings. Our results demonstrate that models trained
using sBD are at par or better than the state-of-the-art
generative models on generative quality. For network
configurations and hyper-parameter setting used for ex-
periments in this section, please see the reference code
provided at https://anonymous.4open.science/r/
5ea4417b-15e9-49a0-b9c9-89ad46e5911f/.

https://anonymous.4open.science/r/5ea4417b-15e9-49a0-b9c9-89ad46e5911f/
https://anonymous.4open.science/r/5ea4417b-15e9-49a0-b9c9-89ad46e5911f/


Manuscript under review by AISTATS 2020

Figure 1: Non-adversarial training using scaled-
Bregman divergence and MMD based DRE. While
the quality is lower than GAN, it is on par with other
non-adversarial methods such as MMDnet [25](Figure
2, top-right), while achieving an order of magnitude
shorter training time.

5.1 Synthetic data: support mismatch

In these experiments, we demonstrate that in the
regime where P and Qφ have mismatched support,
unlike f -divergence, sBD stays well defined and can be
used to minimize the distance between P and Qφ by
adapting φ. Figure 2(a) shows two truncated Gaussian
distributions that do not have overlapping supports
(P = Red, Qφ = Green) and Figures 2(c-e) show the
change in Qφ as sBD is minimized (M = Blue) and
Figures 2(f-h) denote the the change in the divergence
value as optimization progresses under different diver-
gences. The competing divergences are KL, PD and
sBD.

We know, by definition it is not possible to measure
f-divergence between distributions with support mis-
match. We empirically study this for two f-divergences
and compare it with the case of sBD. Importantly, as
shown in Figure 2(f) it is not only possible to measure
sBD in this setting but it can also be minimized with
respect to the parameters of the distributions as shown
in Figures 2(b-e). On the other hand, minimizing KL
divergence (KL) or Pearson divergence (PD) is not
possible, see Figures 2(g-h). Notice, while KL is inf
for distributions with non-overlapping supports, in our
experiments we have clipped its value to keep it defined
when the density ratio is zero.

Next, note that our empirical estimator for sBD de-
pends on two important factors: the variance of the
base distribution and number of samples (mini-batch
size) used in the Monte-Carlo (MC) approximation. In
Figure 3 we show how the empirical convergence rate
observed above changes depending on these two factors.
Figure 3(a) shows that the convergence rate is optimal
when the variance of the base (Gaussian) distribution
is set to six. Higher or lower values than this, nega-

tively affect the convergence. This is because at six,
the base measure optimally overlaps with both P and
Qφ. Sample size is very critical for faster convergence,
as shown in Figure 3(b) the method converges faster
for higher value of samples size used in the MC step.

5.2 Non-adversarial generative model

The sBD estimator, as proposed in this work, depends
on the two density ratio estimators rp/m and rqφ/m.
Since, like MMD and unlike f -divergences, sBD is
defined for distributions with mismatched support, the
MMD based density ratio estimator can be used in
sBD estimation leading to a non-adversarial training
similar to [25]. Figure 1 shows samples from a generator
trained on MNIST dataset using our sBD estimator
with MMD-based DRE estimators. As is typical with
non-adversarial methods [25], the generative quality is
not at par with adversarial methods but the training
is significantly more stable.

5.3 Adversarial generative model

Training generative models on complicated high-
dimensional datasets such as those of natural images is
done preferably with adversarial techniques since they
tend to lead to better sample quality. One straight-
forward way to assign adversarial advantage to our
method is to use a discriminator-based DRE. To eval-
uate our training method on adversarial generation,
in this section, we compare the Frechet Inception Dis-
tance (FID) [26] of MMD-GAN [9], GAN [1] against
BreGMN on CIFAR10 and CelebA dataset. FID mea-
sures the distance between the data and the model
distributions by embedding their samples into a cer-
tain higher layer of a pre-trained Inception Net. We
used a 4-layer DCGAN [27] architecture for all the
experiments and averaged the FID over multiple runs.
N (0, 0.001) is used as the noise level across all the
experiments. MMD-GAN trains a generator network
using the maximum mean discrepency [24] where the
kernel is trained in an adversarial fashion. As shown
in Table 1, both BreGMN and GAN perform better
than MMD-GAN in terms of sample quality. While in
our experiments BreGMN performs only slightly better
than GAN on average, it has been shown in a large
scale study of GANs [28] that the original GAN is at
par with (and sometimes better than) most of the state
of art variants including WGAN [4] on most typical
datasets. Indeed, in general no single GAN-variant is
better when evaluated on FID across all the datasets.



Table 1: Sample quality (measured by FID; lower is better) of BreGMN compared to GANs.

Archtitecture Dataset MMD-GAN GAN BreGMN

DCGAN Cifar10 40 26.82 26.62
DCGAN CelebA 41.10 30.97 30.84

Figure 2: Figures (a-e): sBD can be used to minimize the divergence measure between two truncated-Gaussian
distributions (in green and red) that do not have overlapping support. In Figures (b-d) we use the kernel density
plots and blue points represent the samples from the base measure. Figure (f) shows how KL and PD change as
the sBD is minimized. Figures (g,h) show that minimizing KL or PD is not possible since the two distributions
have disjoint support.

(a) Initial samples (b) Initial state (c) Intermediate state (d) Final state (e) Final samples

(f) sBD Minimization (g) KLD Minimization (h) PD Minimization

Figure 3: Empirical convergence analysis for the experiment in Figure 2 (we keep one of the distributions fixed).
Figure (a) shows the effect of the variance of the base distribution on the empirical convergence and Figure (b)
shows the effect of the batch size (number of samples) on the empirical convergence.

(a) Effect of the variance of the base distribution on the
empirical rate of convergence

(b) Effect of the batch size on the empirical rate of conver-
gence

6 Conclusion

In this work, we proposed scaled-Bregman divergence
based generative models and identified base measures
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for them that facilitate effective training. We showed
that the proposed approach provides a divergence-based
criterion to model the data distribution using deep gen-
erative networks that is robust to support mismatch,
in contrast to the f -divergence based training meth-
ods. Future research directions include the study of
alternative base measures in the scaled Bregman diver-
gence objective, and further analysis of the relationship
between scaled-Bregman divergences and IPMs.
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Supplementary material for:
BreGMN: scaled-Bregman
Generative Modeling
Networks

A Proof of Theorem ??

We have

Bf (P,Q|M̃) =

∫
X
f

(
p(x)

m̃(x)

)
− f

(
q(x)

m̃(x)

)
−

f ′
(
q(x)

m̃(x)

)(
p(x)

m̃(x)
− q(x)

m̃(x)

)
dM̃,

Note that for fixed m̃ of full support and not dependent
on φ, the first two claims in Theorem ?? are immediate.
We thus focus on the case where m̃ depends on φ.

For m̃ = 1/2(P ∗ Nσ + Qφ ∗ Nσ) and fixed σ, the
density ratios can be zero but never infinity on more
than a measure zero set (measure zero w.r.t M̃). More
specifically, the density ratios are continuous and dif-
ferentiable with respect to Qφ.

Claim 1. Since f and f ′ are continuous everywhere
including at zero, and Qφ is (pointwise) continuous
with respect to φ, Bf (P,Q|M̃) must also be.

Claim 2. Since f and f ′ are differentiable everywhere
including at zero, and Qφ is (pointwise) differentiable
with respect to φ, Bf (P,Q|M̃) must also be.

Claim 3. The claim regarding the Wasserstein dis-
tance follows immediately from [4]. For f -divergences
with unbounded f(t)/t, since f is convex the f -
divergence integrand q(x)f(p(x)/q(x)) must be infinite
whenever q(x) = 0 and p(x) > 0, i.e. whenever support
of p is not contained in that of q. Hence the corre-
sponding f -divergence is not continuous everywhere.

B Proof of Proposition ??

Observe that

Bt log t(P, M̃ |M̃)−Bt log t(Q, M̃ |M̃)

= DKL(P ||M̃)−DKL(Q||M̃)

=

∫
X

log

(
p(x)

m̃(x)

)
dP −

∫
X

log

(
q(x)

m̃(x)

)
dQ

=

∫
X

log (m̃(x)) dQ−
∫
X

log (m̃(x)) dP + h(Q)− h(P )

= EV∼Q log (m̃(V ))− EU∼P log (m̃(U)) + h(Q)− h(P )

where we denote the Shannon entropy as h(P ) =
−
∫
X log(p(x))dP . Note that

| log (m̃(U))− log (m̃(V )) |

=

∣∣∣∣∫ 1

0

〈∇ log m̃(tv + (1− t)u), u− v〉dt
∣∣∣∣

≤
∫ 1

0

(
3

σ2
(t‖v‖+ (1− t)‖u‖)

+
4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)
‖u− v‖dt

= ‖u− v‖
(

3

2σ2
(‖v‖+ ‖u‖)

+
4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)
(9)

where we have used Cauchy-Schwartz inequality and
have noted that for all x ∈ Rd,

‖∇ log m̃(x)‖ ≤ 3

σ2
‖x‖+ 4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖) ,

by Proposition 2 of [29].

Let Wp(·, ·) denote the Wasserstein-p distance

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

‖x− y‖pdπ(x, y)

) 1
p

,

where Π(µ, ν) denotes the set of couplings of µ and ν,
i.e. the set of measures on X × X with marginals µ
and ν.

Now, taking the expectation of (9) with respect to the
W2-optimal coupling π between P and Q, we have

|Bt log t(P, M̃ |M̃)−Bt log t(Q, M̃ |M̃)|

≤ E(u,v)∼π

[(
3

2σ2
(‖v‖+ ‖u‖)

+
4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)
‖u− v‖

]
+ |h(Q)− h(P )|

≤
(
Eπ‖u− v‖2

) 1
2

(
Eπ
(

3

2σ2
(‖v‖+ ‖u‖)

+
4

σ2
(EU∼P ‖U‖+ EV∼Q‖V ‖)

)) 1
2

+ |h(Q)− h(P )|
= cW2(P,Q) + |h(Q)− h(P )|,

where we have again used the Cauchy-Schwarz
inequality and have set the constant c =
11

2σ2 (EU∼P ‖U‖+ EV∼Q‖V ‖).



C Generated Samples

Figure 4: Random samples from Adversarial BreGMN
models (after 5 Epochs)

(a) CIFAR10

(b) CELEB A
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